Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  even3prm2 Structured version   Visualization version   Unicode version

Theorem even3prm2 41628
Description: If an even number is the sum of three prime numbers, one of the prime numbers must be 2. (Contributed by AV, 25-Dec-2021.)
Assertion
Ref Expression
even3prm2  |-  ( ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( ( P  +  Q )  +  R
) )  ->  ( P  =  2  \/  Q  =  2  \/  R  =  2 ) )

Proof of Theorem even3prm2
StepHypRef Expression
1 olc 399 . . . 4  |-  ( R  =  2  ->  (
( P  =  2  \/  Q  =  2 )  \/  R  =  2 ) )
21a1d 25 . . 3  |-  ( R  =  2  ->  (
( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( ( P  +  Q )  +  R ) )  -> 
( ( P  =  2  \/  Q  =  2 )  \/  R  =  2 ) ) )
3 df-ne 2795 . . . . . . . . . . . 12  |-  ( R  =/=  2  <->  -.  R  =  2 )
4 eldifsn 4317 . . . . . . . . . . . . . 14  |-  ( R  e.  ( Prime  \  {
2 } )  <->  ( R  e.  Prime  /\  R  =/=  2 ) )
5 oddprmALTV 41598 . . . . . . . . . . . . . . 15  |-  ( R  e.  ( Prime  \  {
2 } )  ->  R  e. Odd  )
6 emoo 41613 . . . . . . . . . . . . . . . 16  |-  ( ( N  e. Even  /\  R  e. Odd  )  ->  ( N  -  R )  e. Odd  )
76expcom 451 . . . . . . . . . . . . . . 15  |-  ( R  e. Odd  ->  ( N  e. Even 
->  ( N  -  R
)  e. Odd  ) )
85, 7syl 17 . . . . . . . . . . . . . 14  |-  ( R  e.  ( Prime  \  {
2 } )  -> 
( N  e. Even  ->  ( N  -  R )  e. Odd  ) )
94, 8sylbir 225 . . . . . . . . . . . . 13  |-  ( ( R  e.  Prime  /\  R  =/=  2 )  ->  ( N  e. Even  ->  ( N  -  R )  e. Odd 
) )
109ex 450 . . . . . . . . . . . 12  |-  ( R  e.  Prime  ->  ( R  =/=  2  ->  ( N  e. Even  ->  ( N  -  R )  e. Odd 
) ) )
113, 10syl5bir 233 . . . . . . . . . . 11  |-  ( R  e.  Prime  ->  ( -.  R  =  2  -> 
( N  e. Even  ->  ( N  -  R )  e. Odd  ) ) )
1211com23 86 . . . . . . . . . 10  |-  ( R  e.  Prime  ->  ( N  e. Even  ->  ( -.  R  =  2  ->  ( N  -  R )  e. Odd  ) ) )
13123ad2ant3 1084 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  ->  ( N  e. Even  ->  ( -.  R  =  2  ->  ( N  -  R )  e. Odd  ) ) )
1413impcom 446 . . . . . . . 8  |-  ( ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime ) )  ->  ( -.  R  =  2  ->  ( N  -  R
)  e. Odd  ) )
15143adant3 1081 . . . . . . 7  |-  ( ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( ( P  +  Q )  +  R
) )  ->  ( -.  R  =  2  ->  ( N  -  R
)  e. Odd  ) )
1615impcom 446 . . . . . 6  |-  ( ( -.  R  =  2  /\  ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( ( P  +  Q )  +  R ) ) )  ->  ( N  -  R )  e. Odd  )
17 3simpa 1058 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  ->  ( P  e.  Prime  /\  Q  e.  Prime ) )
18173ad2ant2 1083 . . . . . . 7  |-  ( ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( ( P  +  Q )  +  R
) )  ->  ( P  e.  Prime  /\  Q  e.  Prime ) )
1918adantl 482 . . . . . 6  |-  ( ( -.  R  =  2  /\  ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( ( P  +  Q )  +  R ) ) )  ->  ( P  e. 
Prime  /\  Q  e.  Prime ) )
20 eqcom 2629 . . . . . . . . 9  |-  ( N  =  ( ( P  +  Q )  +  R )  <->  ( ( P  +  Q )  +  R )  =  N )
21 evenz 41543 . . . . . . . . . . . . 13  |-  ( N  e. Even  ->  N  e.  ZZ )
2221zcnd 11483 . . . . . . . . . . . 12  |-  ( N  e. Even  ->  N  e.  CC )
2322adantr 481 . . . . . . . . . . 11  |-  ( ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime ) )  ->  N  e.  CC )
24 prmz 15389 . . . . . . . . . . . . . 14  |-  ( R  e.  Prime  ->  R  e.  ZZ )
2524zcnd 11483 . . . . . . . . . . . . 13  |-  ( R  e.  Prime  ->  R  e.  CC )
26253ad2ant3 1084 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  ->  R  e.  CC )
2726adantl 482 . . . . . . . . . . 11  |-  ( ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime ) )  ->  R  e.  CC )
28 prmz 15389 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  ZZ )
29 prmz 15389 . . . . . . . . . . . . . . 15  |-  ( Q  e.  Prime  ->  Q  e.  ZZ )
30 zaddcl 11417 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ZZ  /\  Q  e.  ZZ )  ->  ( P  +  Q
)  e.  ZZ )
3128, 29, 30syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  ( P  +  Q )  e.  ZZ )
3231zcnd 11483 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  ( P  +  Q )  e.  CC )
33323adant3 1081 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  ->  ( P  +  Q )  e.  CC )
3433adantl 482 . . . . . . . . . . 11  |-  ( ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime ) )  ->  ( P  +  Q )  e.  CC )
3523, 27, 34subadd2d 10411 . . . . . . . . . 10  |-  ( ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime ) )  ->  (
( N  -  R
)  =  ( P  +  Q )  <->  ( ( P  +  Q )  +  R )  =  N ) )
3635biimprd 238 . . . . . . . . 9  |-  ( ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime ) )  ->  (
( ( P  +  Q )  +  R
)  =  N  -> 
( N  -  R
)  =  ( P  +  Q ) ) )
3720, 36syl5bi 232 . . . . . . . 8  |-  ( ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime ) )  ->  ( N  =  ( ( P  +  Q )  +  R )  ->  ( N  -  R )  =  ( P  +  Q ) ) )
38373impia 1261 . . . . . . 7  |-  ( ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( ( P  +  Q )  +  R
) )  ->  ( N  -  R )  =  ( P  +  Q ) )
3938adantl 482 . . . . . 6  |-  ( ( -.  R  =  2  /\  ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( ( P  +  Q )  +  R ) ) )  ->  ( N  -  R )  =  ( P  +  Q ) )
40 odd2prm2 41627 . . . . . 6  |-  ( ( ( N  -  R
)  e. Odd  /\  ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( N  -  R )  =  ( P  +  Q ) )  -> 
( P  =  2  \/  Q  =  2 ) )
4116, 19, 39, 40syl3anc 1326 . . . . 5  |-  ( ( -.  R  =  2  /\  ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( ( P  +  Q )  +  R ) ) )  ->  ( P  =  2  \/  Q  =  2 ) )
4241orcd 407 . . . 4  |-  ( ( -.  R  =  2  /\  ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( ( P  +  Q )  +  R ) ) )  ->  ( ( P  =  2  \/  Q  =  2 )  \/  R  =  2 ) )
4342ex 450 . . 3  |-  ( -.  R  =  2  -> 
( ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( ( P  +  Q )  +  R ) )  -> 
( ( P  =  2  \/  Q  =  2 )  \/  R  =  2 ) ) )
442, 43pm2.61i 176 . 2  |-  ( ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( ( P  +  Q )  +  R
) )  ->  (
( P  =  2  \/  Q  =  2 )  \/  R  =  2 ) )
45 df-3or 1038 . 2  |-  ( ( P  =  2  \/  Q  =  2  \/  R  =  2 )  <-> 
( ( P  =  2  \/  Q  =  2 )  \/  R  =  2 ) )
4644, 45sylibr 224 1  |-  ( ( N  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( ( P  +  Q )  +  R
) )  ->  ( P  =  2  \/  Q  =  2  \/  R  =  2 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   {csn 4177  (class class class)co 6650   CCcc 9934    + caddc 9939    - cmin 10266   2c2 11070   ZZcz 11377   Primecprime 15385   Even ceven 41537   Odd codd 41538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-even 41539  df-odd 41540
This theorem is referenced by:  mogoldbblem  41629
  Copyright terms: Public domain W3C validator