Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mogoldbblem Structured version   Visualization version   Unicode version

Theorem mogoldbblem 41629
Description: Lemma for mogoldbb 41673. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
mogoldbblem  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  /\  ( N  + 
2 )  =  ( ( P  +  Q
)  +  R ) )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) )
Distinct variable groups:    N, p, q    P, p, q    Q, p, q    R, p, q

Proof of Theorem mogoldbblem
StepHypRef Expression
1 2evenALTV 41603 . . . . 5  |-  2  e. Even
2 epee 41614 . . . . 5  |-  ( ( N  e. Even  /\  2  e. Even  )  ->  ( N  +  2 )  e. Even 
)
31, 2mpan2 707 . . . 4  |-  ( N  e. Even  ->  ( N  + 
2 )  e. Even  )
433ad2ant2 1083 . . 3  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  /\  ( N  + 
2 )  =  ( ( P  +  Q
)  +  R ) )  ->  ( N  +  2 )  e. Even 
)
5 simp1 1061 . . 3  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  /\  ( N  + 
2 )  =  ( ( P  +  Q
)  +  R ) )  ->  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime ) )
6 simp3 1063 . . 3  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  /\  ( N  + 
2 )  =  ( ( P  +  Q
)  +  R ) )  ->  ( N  +  2 )  =  ( ( P  +  Q )  +  R
) )
7 even3prm2 41628 . . 3  |-  ( ( ( N  +  2 )  e. Even  /\  ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  ( N  +  2 )  =  ( ( P  +  Q )  +  R
) )  ->  ( P  =  2  \/  Q  =  2  \/  R  =  2 ) )
84, 5, 6, 7syl3anc 1326 . 2  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  /\  ( N  + 
2 )  =  ( ( P  +  Q
)  +  R ) )  ->  ( P  =  2  \/  Q  =  2  \/  R  =  2 ) )
9 oveq1 6657 . . . . . . . . . . 11  |-  ( P  =  2  ->  ( P  +  Q )  =  ( 2  +  Q ) )
109oveq1d 6665 . . . . . . . . . 10  |-  ( P  =  2  ->  (
( P  +  Q
)  +  R )  =  ( ( 2  +  Q )  +  R ) )
1110eqeq2d 2632 . . . . . . . . 9  |-  ( P  =  2  ->  (
( N  +  2 )  =  ( ( P  +  Q )  +  R )  <->  ( N  +  2 )  =  ( ( 2  +  Q )  +  R
) ) )
12 2cnd 11093 . . . . . . . . . . . . . . 15  |-  ( ( Q  e.  Prime  /\  R  e.  Prime )  ->  2  e.  CC )
13 prmz 15389 . . . . . . . . . . . . . . . . 17  |-  ( Q  e.  Prime  ->  Q  e.  ZZ )
1413zcnd 11483 . . . . . . . . . . . . . . . 16  |-  ( Q  e.  Prime  ->  Q  e.  CC )
1514adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( Q  e.  Prime  /\  R  e.  Prime )  ->  Q  e.  CC )
16 prmz 15389 . . . . . . . . . . . . . . . . 17  |-  ( R  e.  Prime  ->  R  e.  ZZ )
1716zcnd 11483 . . . . . . . . . . . . . . . 16  |-  ( R  e.  Prime  ->  R  e.  CC )
1817adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( Q  e.  Prime  /\  R  e.  Prime )  ->  R  e.  CC )
19 simp1 1061 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  CC  /\  Q  e.  CC  /\  R  e.  CC )  ->  2  e.  CC )
20 addcl 10018 . . . . . . . . . . . . . . . . 17  |-  ( ( Q  e.  CC  /\  R  e.  CC )  ->  ( Q  +  R
)  e.  CC )
21203adant1 1079 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  CC  /\  Q  e.  CC  /\  R  e.  CC )  ->  ( Q  +  R )  e.  CC )
22 addass 10023 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  CC  /\  Q  e.  CC  /\  R  e.  CC )  ->  (
( 2  +  Q
)  +  R )  =  ( 2  +  ( Q  +  R
) ) )
2319, 21, 22comraddd 10250 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  Q  e.  CC  /\  R  e.  CC )  ->  (
( 2  +  Q
)  +  R )  =  ( ( Q  +  R )  +  2 ) )
2412, 15, 18, 23syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( Q  e.  Prime  /\  R  e.  Prime )  ->  (
( 2  +  Q
)  +  R )  =  ( ( Q  +  R )  +  2 ) )
2524eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( ( Q  e.  Prime  /\  R  e.  Prime )  ->  (
( N  +  2 )  =  ( ( 2  +  Q )  +  R )  <->  ( N  +  2 )  =  ( ( Q  +  R )  +  2 ) ) )
2625adantr 481 . . . . . . . . . . . 12  |-  ( ( ( Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( ( N  + 
2 )  =  ( ( 2  +  Q
)  +  R )  <-> 
( N  +  2 )  =  ( ( Q  +  R )  +  2 ) ) )
27 evenz 41543 . . . . . . . . . . . . . . 15  |-  ( N  e. Even  ->  N  e.  ZZ )
2827zcnd 11483 . . . . . . . . . . . . . 14  |-  ( N  e. Even  ->  N  e.  CC )
2928adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  ->  N  e.  CC )
30 zaddcl 11417 . . . . . . . . . . . . . . . 16  |-  ( ( Q  e.  ZZ  /\  R  e.  ZZ )  ->  ( Q  +  R
)  e.  ZZ )
3113, 16, 30syl2an 494 . . . . . . . . . . . . . . 15  |-  ( ( Q  e.  Prime  /\  R  e.  Prime )  ->  ( Q  +  R )  e.  ZZ )
3231zcnd 11483 . . . . . . . . . . . . . 14  |-  ( ( Q  e.  Prime  /\  R  e.  Prime )  ->  ( Q  +  R )  e.  CC )
3332adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( Q  +  R
)  e.  CC )
34 2cnd 11093 . . . . . . . . . . . . 13  |-  ( ( ( Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
2  e.  CC )
3529, 33, 34addcan2d 10240 . . . . . . . . . . . 12  |-  ( ( ( Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( ( N  + 
2 )  =  ( ( Q  +  R
)  +  2 )  <-> 
N  =  ( Q  +  R ) ) )
3626, 35bitrd 268 . . . . . . . . . . 11  |-  ( ( ( Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( ( N  + 
2 )  =  ( ( 2  +  Q
)  +  R )  <-> 
N  =  ( Q  +  R ) ) )
37 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( Q  +  R )
)  ->  Q  e.  Prime )
38 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( p  =  Q  ->  (
p  +  q )  =  ( Q  +  q ) )
3938eqeq2d 2632 . . . . . . . . . . . . . . . 16  |-  ( p  =  Q  ->  ( N  =  ( p  +  q )  <->  N  =  ( Q  +  q
) ) )
4039rexbidv 3052 . . . . . . . . . . . . . . 15  |-  ( p  =  Q  ->  ( E. q  e.  Prime  N  =  ( p  +  q )  <->  E. q  e.  Prime  N  =  ( Q  +  q ) ) )
4140adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( Q  e. 
Prime  /\  R  e.  Prime )  /\  N  =  ( Q  +  R ) )  /\  p  =  Q )  ->  ( E. q  e.  Prime  N  =  ( p  +  q )  <->  E. q  e.  Prime  N  =  ( Q  +  q ) ) )
42 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( Q  +  R )
)  ->  R  e.  Prime )
43 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( Q  +  R )
)  ->  N  =  ( Q  +  R
) )
44 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( q  =  R  ->  ( Q  +  q )  =  ( Q  +  R ) )
4544eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( q  =  R  ->  ( Q  +  R )  =  ( Q  +  q ) )
4643, 45sylan9eq 2676 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Q  e. 
Prime  /\  R  e.  Prime )  /\  N  =  ( Q  +  R ) )  /\  q  =  R )  ->  N  =  ( Q  +  q ) )
4742, 46rspcedeq2vd 3319 . . . . . . . . . . . . . 14  |-  ( ( ( Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( Q  +  R )
)  ->  E. q  e.  Prime  N  =  ( Q  +  q ) )
4837, 41, 47rspcedvd 3317 . . . . . . . . . . . . 13  |-  ( ( ( Q  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( Q  +  R )
)  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) )
4948ex 450 . . . . . . . . . . . 12  |-  ( ( Q  e.  Prime  /\  R  e.  Prime )  ->  ( N  =  ( Q  +  R )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
5049adantr 481 . . . . . . . . . . 11  |-  ( ( ( Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( N  =  ( Q  +  R )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
5136, 50sylbid 230 . . . . . . . . . 10  |-  ( ( ( Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( ( N  + 
2 )  =  ( ( 2  +  Q
)  +  R )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
5251com12 32 . . . . . . . . 9  |-  ( ( N  +  2 )  =  ( ( 2  +  Q )  +  R )  ->  (
( ( Q  e. 
Prime  /\  R  e.  Prime )  /\  N  e. Even  )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
5311, 52syl6bi 243 . . . . . . . 8  |-  ( P  =  2  ->  (
( N  +  2 )  =  ( ( P  +  Q )  +  R )  -> 
( ( ( Q  e.  Prime  /\  R  e. 
Prime )  /\  N  e. Even 
)  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) ) )
5453com13 88 . . . . . . 7  |-  ( ( ( Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( ( N  + 
2 )  =  ( ( P  +  Q
)  +  R )  ->  ( P  =  2  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) ) )
5554ex 450 . . . . . 6  |-  ( ( Q  e.  Prime  /\  R  e.  Prime )  ->  ( N  e. Even  ->  ( ( N  +  2 )  =  ( ( P  +  Q )  +  R )  ->  ( P  =  2  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) ) ) )
56553adant1 1079 . . . . 5  |-  ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  ->  ( N  e. Even  ->  ( ( N  +  2 )  =  ( ( P  +  Q )  +  R
)  ->  ( P  =  2  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) ) ) )
57563imp 1256 . . . 4  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  /\  ( N  + 
2 )  =  ( ( P  +  Q
)  +  R ) )  ->  ( P  =  2  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
5857com12 32 . . 3  |-  ( P  =  2  ->  (
( ( P  e. 
Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  /\  ( N  +  2 )  =  ( ( P  +  Q )  +  R ) )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
59 oveq2 6658 . . . . . . . . . . 11  |-  ( Q  =  2  ->  ( P  +  Q )  =  ( P  + 
2 ) )
6059oveq1d 6665 . . . . . . . . . 10  |-  ( Q  =  2  ->  (
( P  +  Q
)  +  R )  =  ( ( P  +  2 )  +  R ) )
6160eqeq2d 2632 . . . . . . . . 9  |-  ( Q  =  2  ->  (
( N  +  2 )  =  ( ( P  +  Q )  +  R )  <->  ( N  +  2 )  =  ( ( P  + 
2 )  +  R
) ) )
62 prmz 15389 . . . . . . . . . . . . . . . . . 18  |-  ( P  e.  Prime  ->  P  e.  ZZ )
6362zcnd 11483 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  CC )
6463adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  R  e.  Prime )  ->  P  e.  CC )
65 2cnd 11093 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  R  e.  Prime )  ->  2  e.  CC )
6617adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  R  e.  Prime )  ->  R  e.  CC )
6764, 65, 663jca 1242 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  R  e.  Prime )  ->  ( P  e.  CC  /\  2  e.  CC  /\  R  e.  CC ) )
6867adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( P  e.  CC  /\  2  e.  CC  /\  R  e.  CC )
)
69 add32 10254 . . . . . . . . . . . . . 14  |-  ( ( P  e.  CC  /\  2  e.  CC  /\  R  e.  CC )  ->  (
( P  +  2 )  +  R )  =  ( ( P  +  R )  +  2 ) )
7068, 69syl 17 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( ( P  + 
2 )  +  R
)  =  ( ( P  +  R )  +  2 ) )
7170eqeq2d 2632 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( ( N  + 
2 )  =  ( ( P  +  2 )  +  R )  <-> 
( N  +  2 )  =  ( ( P  +  R )  +  2 ) ) )
7228adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  ->  N  e.  CC )
73 zaddcl 11417 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ZZ  /\  R  e.  ZZ )  ->  ( P  +  R
)  e.  ZZ )
7462, 16, 73syl2an 494 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  R  e.  Prime )  ->  ( P  +  R )  e.  ZZ )
7574zcnd 11483 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  R  e.  Prime )  ->  ( P  +  R )  e.  CC )
7675adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( P  +  R
)  e.  CC )
77 2cnd 11093 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
2  e.  CC )
7872, 76, 77addcan2d 10240 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( ( N  + 
2 )  =  ( ( P  +  R
)  +  2 )  <-> 
N  =  ( P  +  R ) ) )
7971, 78bitrd 268 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( ( N  + 
2 )  =  ( ( P  +  2 )  +  R )  <-> 
N  =  ( P  +  R ) ) )
80 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( P  +  R )
)  ->  P  e.  Prime )
81 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( p  =  P  ->  (
p  +  q )  =  ( P  +  q ) )
8281eqeq2d 2632 . . . . . . . . . . . . . . . 16  |-  ( p  =  P  ->  ( N  =  ( p  +  q )  <->  N  =  ( P  +  q
) ) )
8382rexbidv 3052 . . . . . . . . . . . . . . 15  |-  ( p  =  P  ->  ( E. q  e.  Prime  N  =  ( p  +  q )  <->  E. q  e.  Prime  N  =  ( P  +  q ) ) )
8483adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  R  e.  Prime )  /\  N  =  ( P  +  R ) )  /\  p  =  P )  ->  ( E. q  e.  Prime  N  =  ( p  +  q )  <->  E. q  e.  Prime  N  =  ( P  +  q ) ) )
85 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( P  +  R )
)  ->  R  e.  Prime )
86 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( P  +  R )
)  ->  N  =  ( P  +  R
) )
87 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( q  =  R  ->  ( P  +  q )  =  ( P  +  R ) )
8887eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( q  =  R  ->  ( P  +  R )  =  ( P  +  q ) )
8986, 88sylan9eq 2676 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  R  e.  Prime )  /\  N  =  ( P  +  R ) )  /\  q  =  R )  ->  N  =  ( P  +  q ) )
9085, 89rspcedeq2vd 3319 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( P  +  R )
)  ->  E. q  e.  Prime  N  =  ( P  +  q ) )
9180, 84, 90rspcedvd 3317 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  =  ( P  +  R )
)  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) )
9291ex 450 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  R  e.  Prime )  ->  ( N  =  ( P  +  R )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
9392adantr 481 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( N  =  ( P  +  R )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
9479, 93sylbid 230 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( ( N  + 
2 )  =  ( ( P  +  2 )  +  R )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
9594com12 32 . . . . . . . . 9  |-  ( ( N  +  2 )  =  ( ( P  +  2 )  +  R )  ->  (
( ( P  e. 
Prime  /\  R  e.  Prime )  /\  N  e. Even  )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
9661, 95syl6bi 243 . . . . . . . 8  |-  ( Q  =  2  ->  (
( N  +  2 )  =  ( ( P  +  Q )  +  R )  -> 
( ( ( P  e.  Prime  /\  R  e. 
Prime )  /\  N  e. Even 
)  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) ) )
9796com13 88 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  )  -> 
( ( N  + 
2 )  =  ( ( P  +  Q
)  +  R )  ->  ( Q  =  2  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) ) )
9897ex 450 . . . . . 6  |-  ( ( P  e.  Prime  /\  R  e.  Prime )  ->  ( N  e. Even  ->  ( ( N  +  2 )  =  ( ( P  +  Q )  +  R )  ->  ( Q  =  2  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) ) ) )
99983adant2 1080 . . . . 5  |-  ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  ->  ( N  e. Even  ->  ( ( N  +  2 )  =  ( ( P  +  Q )  +  R
)  ->  ( Q  =  2  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) ) ) )
100993imp 1256 . . . 4  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  /\  ( N  + 
2 )  =  ( ( P  +  Q
)  +  R ) )  ->  ( Q  =  2  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
101100com12 32 . . 3  |-  ( Q  =  2  ->  (
( ( P  e. 
Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  /\  ( N  +  2 )  =  ( ( P  +  Q )  +  R ) )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
102 oveq2 6658 . . . . . . . . . 10  |-  ( R  =  2  ->  (
( P  +  Q
)  +  R )  =  ( ( P  +  Q )  +  2 ) )
103102eqeq2d 2632 . . . . . . . . 9  |-  ( R  =  2  ->  (
( N  +  2 )  =  ( ( P  +  Q )  +  R )  <->  ( N  +  2 )  =  ( ( P  +  Q )  +  2 ) ) )
10428adantl 482 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  N  e. Even  )  ->  N  e.  CC )
105 zaddcl 11417 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ZZ  /\  Q  e.  ZZ )  ->  ( P  +  Q
)  e.  ZZ )
10662, 13, 105syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  ( P  +  Q )  e.  ZZ )
107106zcnd 11483 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  ( P  +  Q )  e.  CC )
108107adantr 481 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  N  e. Even  )  -> 
( P  +  Q
)  e.  CC )
109 2cnd 11093 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  N  e. Even  )  -> 
2  e.  CC )
110104, 108, 109addcan2d 10240 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  N  e. Even  )  -> 
( ( N  + 
2 )  =  ( ( P  +  Q
)  +  2 )  <-> 
N  =  ( P  +  Q ) ) )
111 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  N  =  ( P  +  Q )
)  ->  P  e.  Prime )
11283adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  Q  e.  Prime )  /\  N  =  ( P  +  Q ) )  /\  p  =  P )  ->  ( E. q  e.  Prime  N  =  ( p  +  q )  <->  E. q  e.  Prime  N  =  ( P  +  q ) ) )
113 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  N  =  ( P  +  Q )
)  ->  Q  e.  Prime )
114 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  N  =  ( P  +  Q )
)  ->  N  =  ( P  +  Q
) )
115 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( q  =  Q  ->  ( P  +  q )  =  ( P  +  Q ) )
116115eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( q  =  Q  ->  ( P  +  Q )  =  ( P  +  q ) )
117114, 116sylan9eq 2676 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  Q  e.  Prime )  /\  N  =  ( P  +  Q ) )  /\  q  =  Q )  ->  N  =  ( P  +  q ) )
118113, 117rspcedeq2vd 3319 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  N  =  ( P  +  Q )
)  ->  E. q  e.  Prime  N  =  ( P  +  q ) )
119111, 112, 118rspcedvd 3317 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  N  =  ( P  +  Q )
)  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) )
120119ex 450 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  ( N  =  ( P  +  Q )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
121120adantr 481 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  N  e. Even  )  -> 
( N  =  ( P  +  Q )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
122110, 121sylbid 230 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  N  e. Even  )  -> 
( ( N  + 
2 )  =  ( ( P  +  Q
)  +  2 )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
123122com12 32 . . . . . . . . 9  |-  ( ( N  +  2 )  =  ( ( P  +  Q )  +  2 )  ->  (
( ( P  e. 
Prime  /\  Q  e.  Prime )  /\  N  e. Even  )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
124103, 123syl6bi 243 . . . . . . . 8  |-  ( R  =  2  ->  (
( N  +  2 )  =  ( ( P  +  Q )  +  R )  -> 
( ( ( P  e.  Prime  /\  Q  e. 
Prime )  /\  N  e. Even 
)  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) ) )
125124com13 88 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  N  e. Even  )  -> 
( ( N  + 
2 )  =  ( ( P  +  Q
)  +  R )  ->  ( R  =  2  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) ) )
126125ex 450 . . . . . 6  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  ( N  e. Even  ->  ( ( N  +  2 )  =  ( ( P  +  Q )  +  R )  ->  ( R  =  2  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) ) ) )
1271263adant3 1081 . . . . 5  |-  ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  ->  ( N  e. Even  ->  ( ( N  +  2 )  =  ( ( P  +  Q )  +  R
)  ->  ( R  =  2  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) ) ) )
1281273imp 1256 . . . 4  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  /\  ( N  + 
2 )  =  ( ( P  +  Q
)  +  R ) )  ->  ( R  =  2  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
129128com12 32 . . 3  |-  ( R  =  2  ->  (
( ( P  e. 
Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  /\  ( N  +  2 )  =  ( ( P  +  Q )  +  R ) )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
13058, 101, 1293jaoi 1391 . 2  |-  ( ( P  =  2  \/  Q  =  2  \/  R  =  2 )  ->  ( ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  /\  ( N  +  2 )  =  ( ( P  +  Q )  +  R ) )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) ) )
1318, 130mpcom 38 1  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime  /\  R  e.  Prime )  /\  N  e. Even  /\  ( N  + 
2 )  =  ( ( P  +  Q
)  +  R ) )  ->  E. p  e.  Prime  E. q  e.  Prime  N  =  ( p  +  q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913  (class class class)co 6650   CCcc 9934    + caddc 9939   2c2 11070   ZZcz 11377   Primecprime 15385   Even ceven 41537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-even 41539  df-odd 41540
This theorem is referenced by:  mogoldbb  41673
  Copyright terms: Public domain W3C validator