MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnlbnd2 Structured version   Visualization version   Unicode version

Theorem expnlbnd2 12995
Description: The reciprocal of exponentiation with a mantissa greater than 1 has no lower bound. (Contributed by NM, 18-Jul-2008.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
expnlbnd2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( 1  /  ( B ^ k ) )  <  A )
Distinct variable groups:    j, k, A    B, j, k

Proof of Theorem expnlbnd2
StepHypRef Expression
1 expnlbnd 12994 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. j  e.  NN  ( 1  / 
( B ^ j
) )  <  A
)
2 simpl2 1065 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  B  e.  RR )
3 simpl3 1066 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  1  <  B
)
4 1re 10039 . . . . . . . . . 10  |-  1  e.  RR
5 ltle 10126 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  B  e.  RR )  ->  ( 1  <  B  ->  1  <_  B )
)
64, 2, 5sylancr 695 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  < 
B  ->  1  <_  B ) )
73, 6mpd 15 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  1  <_  B
)
8 simprr 796 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  k  e.  (
ZZ>= `  j ) )
9 leexp2a 12916 . . . . . . . 8  |-  ( ( B  e.  RR  /\  1  <_  B  /\  k  e.  ( ZZ>= `  j )
)  ->  ( B ^ j )  <_ 
( B ^ k
) )
102, 7, 8, 9syl3anc 1326 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( B ^
j )  <_  ( B ^ k ) )
11 0red 10041 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  0  e.  RR )
12 1red 10055 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  1  e.  RR )
13 0lt1 10550 . . . . . . . . . . . 12  |-  0  <  1
1413a1i 11 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  0  <  1
)
1511, 12, 2, 14, 3lttrd 10198 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  0  <  B
)
162, 15elrpd 11869 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  B  e.  RR+ )
17 nnz 11399 . . . . . . . . . 10  |-  ( j  e.  NN  ->  j  e.  ZZ )
1817ad2antrl 764 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  j  e.  ZZ )
19 rpexpcl 12879 . . . . . . . . 9  |-  ( ( B  e.  RR+  /\  j  e.  ZZ )  ->  ( B ^ j )  e.  RR+ )
2016, 18, 19syl2anc 693 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( B ^
j )  e.  RR+ )
21 eluzelz 11697 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  j
)  ->  k  e.  ZZ )
2221ad2antll 765 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  k  e.  ZZ )
23 rpexpcl 12879 . . . . . . . . 9  |-  ( ( B  e.  RR+  /\  k  e.  ZZ )  ->  ( B ^ k )  e.  RR+ )
2416, 22, 23syl2anc 693 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( B ^
k )  e.  RR+ )
2520, 24lerecd 11891 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( B ^ j )  <_ 
( B ^ k
)  <->  ( 1  / 
( B ^ k
) )  <_  (
1  /  ( B ^ j ) ) ) )
2610, 25mpbid 222 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  / 
( B ^ k
) )  <_  (
1  /  ( B ^ j ) ) )
2724rprecred 11883 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  / 
( B ^ k
) )  e.  RR )
2820rprecred 11883 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  / 
( B ^ j
) )  e.  RR )
29 simpl1 1064 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A  e.  RR+ )
3029rpred 11872 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A  e.  RR )
31 lelttr 10128 . . . . . . 7  |-  ( ( ( 1  /  ( B ^ k ) )  e.  RR  /\  (
1  /  ( B ^ j ) )  e.  RR  /\  A  e.  RR )  ->  (
( ( 1  / 
( B ^ k
) )  <_  (
1  /  ( B ^ j ) )  /\  ( 1  / 
( B ^ j
) )  <  A
)  ->  ( 1  /  ( B ^
k ) )  < 
A ) )
3227, 28, 30, 31syl3anc 1326 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( 1  /  ( B ^ k ) )  <_  ( 1  / 
( B ^ j
) )  /\  (
1  /  ( B ^ j ) )  <  A )  -> 
( 1  /  ( B ^ k ) )  <  A ) )
3326, 32mpand 711 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( 1  /  ( B ^
j ) )  < 
A  ->  ( 1  /  ( B ^
k ) )  < 
A ) )
3433anassrs 680 . . . 4  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( 1  /  ( B ^
j ) )  < 
A  ->  ( 1  /  ( B ^
k ) )  < 
A ) )
3534ralrimdva 2969 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  j  e.  NN )  ->  ( ( 1  / 
( B ^ j
) )  <  A  ->  A. k  e.  (
ZZ>= `  j ) ( 1  /  ( B ^ k ) )  <  A ) )
3635reximdva 3017 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  ( E. j  e.  NN  ( 1  /  ( B ^ j ) )  <  A  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( 1  /  ( B ^ k ) )  <  A ) )
371, 36mpd 15 1  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( 1  /  ( B ^ k ) )  <  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator