| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fge0iccico | Structured version Visualization version Unicode version | ||
| Description: A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| fge0iccico.f |
|
| fge0iccico.re |
|
| Ref | Expression |
|---|---|
| fge0iccico |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fge0iccico.f |
. . . 4
| |
| 2 | ffn 6045 |
. . . 4
| |
| 3 | 1, 2 | syl 17 |
. . 3
|
| 4 | 0xr 10086 |
. . . . . 6
| |
| 5 | 4 | a1i 11 |
. . . . 5
|
| 6 | pnfxr 10092 |
. . . . . 6
| |
| 7 | 6 | a1i 11 |
. . . . 5
|
| 8 | iccssxr 12256 |
. . . . . 6
| |
| 9 | 1 | ffvelrnda 6359 |
. . . . . 6
|
| 10 | 8, 9 | sseldi 3601 |
. . . . 5
|
| 11 | iccgelb 12230 |
. . . . . 6
| |
| 12 | 5, 7, 9, 11 | syl3anc 1326 |
. . . . 5
|
| 13 | 10 | adantr 481 |
. . . . . . . . 9
|
| 14 | simpr 477 |
. . . . . . . . . 10
| |
| 15 | 6 | a1i 11 |
. . . . . . . . . . 11
|
| 16 | 15, 13 | xrlenltd 10104 |
. . . . . . . . . 10
|
| 17 | 14, 16 | mpbird 247 |
. . . . . . . . 9
|
| 18 | 13, 17 | xrgepnfd 39547 |
. . . . . . . 8
|
| 19 | 18 | eqcomd 2628 |
. . . . . . 7
|
| 20 | ffun 6048 |
. . . . . . . . . . 11
| |
| 21 | 1, 20 | syl 17 |
. . . . . . . . . 10
|
| 22 | 21 | adantr 481 |
. . . . . . . . 9
|
| 23 | simpr 477 |
. . . . . . . . . 10
| |
| 24 | fdm 6051 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | eqcomd 2628 |
. . . . . . . . . . . 12
|
| 26 | 1, 25 | syl 17 |
. . . . . . . . . . 11
|
| 27 | 26 | adantr 481 |
. . . . . . . . . 10
|
| 28 | 23, 27 | eleqtrd 2703 |
. . . . . . . . 9
|
| 29 | fvelrn 6352 |
. . . . . . . . 9
| |
| 30 | 22, 28, 29 | syl2anc 693 |
. . . . . . . 8
|
| 31 | 30 | adantr 481 |
. . . . . . 7
|
| 32 | 19, 31 | eqeltrd 2701 |
. . . . . 6
|
| 33 | fge0iccico.re |
. . . . . . 7
| |
| 34 | 33 | ad2antrr 762 |
. . . . . 6
|
| 35 | 32, 34 | condan 835 |
. . . . 5
|
| 36 | 5, 7, 10, 12, 35 | elicod 12224 |
. . . 4
|
| 37 | 36 | ralrimiva 2966 |
. . 3
|
| 38 | 3, 37 | jca 554 |
. 2
|
| 39 | ffnfv 6388 |
. 2
| |
| 40 | 38, 39 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-ico 12181 df-icc 12182 |
| This theorem is referenced by: fge0iccre 40591 sge00 40593 sge0sn 40596 sge0tsms 40597 sge0cl 40598 sge0supre 40606 sge0sup 40608 sge0less 40609 sge0rnbnd 40610 sge0ltfirp 40617 sge0resplit 40623 sge0le 40624 sge0split 40626 sge0iunmptlemre 40632 |
| Copyright terms: Public domain | W3C validator |