Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fge0iccico Structured version   Visualization version   Unicode version

Theorem fge0iccico 40587
Description: A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fge0iccico.f  |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )
fge0iccico.re  |-  ( ph  ->  -. +oo  e.  ran  F )
Assertion
Ref Expression
fge0iccico  |-  ( ph  ->  F : X --> ( 0 [,) +oo ) )

Proof of Theorem fge0iccico
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fge0iccico.f . . . 4  |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )
2 ffn 6045 . . . 4  |-  ( F : X --> ( 0 [,] +oo )  ->  F  Fn  X )
31, 2syl 17 . . 3  |-  ( ph  ->  F  Fn  X )
4 0xr 10086 . . . . . 6  |-  0  e.  RR*
54a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  0  e.  RR* )
6 pnfxr 10092 . . . . . 6  |- +oo  e.  RR*
76a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  X )  -> +oo  e.  RR* )
8 iccssxr 12256 . . . . . 6  |-  ( 0 [,] +oo )  C_  RR*
91ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  ( 0 [,] +oo ) )
108, 9sseldi 3601 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  RR* )
11 iccgelb 12230 . . . . . 6  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  ( F `
 x )  e.  ( 0 [,] +oo ) )  ->  0  <_  ( F `  x
) )
125, 7, 9, 11syl3anc 1326 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  0  <_  ( F `  x
) )
1310adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  X )  /\  -.  ( F `  x )  < +oo )  ->  ( F `  x )  e.  RR* )
14 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  X )  /\  -.  ( F `  x )  < +oo )  ->  -.  ( F `  x )  < +oo )
156a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  -.  ( F `  x )  < +oo )  -> +oo  e.  RR* )
1615, 13xrlenltd 10104 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  X )  /\  -.  ( F `  x )  < +oo )  ->  ( +oo  <_  ( F `  x )  <->  -.  ( F `  x )  < +oo ) )
1714, 16mpbird 247 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  X )  /\  -.  ( F `  x )  < +oo )  -> +oo  <_  ( F `  x ) )
1813, 17xrgepnfd 39547 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  -.  ( F `  x )  < +oo )  ->  ( F `  x )  = +oo )
1918eqcomd 2628 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  X )  /\  -.  ( F `  x )  < +oo )  -> +oo  =  ( F `  x ) )
20 ffun 6048 . . . . . . . . . . 11  |-  ( F : X --> ( 0 [,] +oo )  ->  Fun  F )
211, 20syl 17 . . . . . . . . . 10  |-  ( ph  ->  Fun  F )
2221adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  Fun  F )
23 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
24 fdm 6051 . . . . . . . . . . . . 13  |-  ( F : X --> ( 0 [,] +oo )  ->  dom  F  =  X )
2524eqcomd 2628 . . . . . . . . . . . 12  |-  ( F : X --> ( 0 [,] +oo )  ->  X  =  dom  F )
261, 25syl 17 . . . . . . . . . . 11  |-  ( ph  ->  X  =  dom  F
)
2726adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  X  =  dom  F )
2823, 27eleqtrd 2703 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  F )
29 fvelrn 6352 . . . . . . . . 9  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  ran  F
)
3022, 28, 29syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  ran  F )
3130adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  X )  /\  -.  ( F `  x )  < +oo )  ->  ( F `  x )  e.  ran  F )
3219, 31eqeltrd 2701 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  -.  ( F `  x )  < +oo )  -> +oo  e.  ran  F )
33 fge0iccico.re . . . . . . 7  |-  ( ph  ->  -. +oo  e.  ran  F )
3433ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  -.  ( F `  x )  < +oo )  ->  -. +oo  e.  ran  F )
3532, 34condan 835 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  < +oo )
365, 7, 10, 12, 35elicod 12224 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  ( 0 [,) +oo ) )
3736ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  X  ( F `  x )  e.  ( 0 [,) +oo ) )
383, 37jca 554 . 2  |-  ( ph  ->  ( F  Fn  X  /\  A. x  e.  X  ( F `  x )  e.  ( 0 [,) +oo ) ) )
39 ffnfv 6388 . 2  |-  ( F : X --> ( 0 [,) +oo )  <->  ( F  Fn  X  /\  A. x  e.  X  ( F `  x )  e.  ( 0 [,) +oo )
) )
4038, 39sylibr 224 1  |-  ( ph  ->  F : X --> ( 0 [,) +oo ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653   dom cdm 5114   ran crn 5115   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   [,)cico 12177   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ico 12181  df-icc 12182
This theorem is referenced by:  fge0iccre  40591  sge00  40593  sge0sn  40596  sge0tsms  40597  sge0cl  40598  sge0supre  40606  sge0sup  40608  sge0less  40609  sge0rnbnd  40610  sge0ltfirp  40617  sge0resplit  40623  sge0le  40624  sge0split  40626  sge0iunmptlemre  40632
  Copyright terms: Public domain W3C validator