Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0cl Structured version   Visualization version   Unicode version

Theorem sge0cl 40598
Description: The arbitrary sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0cl.x  |-  ( ph  ->  X  e.  V )
sge0cl.f  |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )
Assertion
Ref Expression
sge0cl  |-  ( ph  ->  (Σ^ `  F )  e.  ( 0 [,] +oo )
)

Proof of Theorem sge0cl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . 5  |-  ( F  =  (/)  ->  (Σ^ `  F )  =  (Σ^ `  (/) ) )
2 sge00 40593 . . . . . 6  |-  (Σ^ `  (/) )  =  0
32a1i 11 . . . . 5  |-  ( F  =  (/)  ->  (Σ^ `  (/) )  =  0
)
41, 3eqtrd 2656 . . . 4  |-  ( F  =  (/)  ->  (Σ^ `  F )  =  0 )
5 0e0iccpnf 12283 . . . . 5  |-  0  e.  ( 0 [,] +oo )
65a1i 11 . . . 4  |-  ( F  =  (/)  ->  0  e.  ( 0 [,] +oo ) )
74, 6eqeltrd 2701 . . 3  |-  ( F  =  (/)  ->  (Σ^ `  F )  e.  ( 0 [,] +oo )
)
87adantl 482 . 2  |-  ( (
ph  /\  F  =  (/) )  ->  (Σ^ `  F )  e.  ( 0 [,] +oo )
)
9 sge0cl.x . . . . . . 7  |-  ( ph  ->  X  e.  V )
109adantr 481 . . . . . 6  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  X  e.  V )
11 sge0cl.f . . . . . . 7  |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )
1211adantr 481 . . . . . 6  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  F : X
--> ( 0 [,] +oo ) )
13 simpr 477 . . . . . 6  |-  ( (
ph  /\ +oo  e.  ran  F )  -> +oo  e.  ran  F )
1410, 12, 13sge0pnfval 40590 . . . . 5  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  (Σ^ `  F )  = +oo )
15 pnfel0pnf 39754 . . . . . 6  |- +oo  e.  ( 0 [,] +oo )
1615a1i 11 . . . . 5  |-  ( (
ph  /\ +oo  e.  ran  F )  -> +oo  e.  ( 0 [,] +oo )
)
1714, 16eqeltrd 2701 . . . 4  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  (Σ^ `  F )  e.  ( 0 [,] +oo )
)
1817adantlr 751 . . 3  |-  ( ( ( ph  /\  -.  F  =  (/) )  /\ +oo  e.  ran  F )  ->  (Σ^ `  F )  e.  ( 0 [,] +oo )
)
19 simpll 790 . . . 4  |-  ( ( ( ph  /\  -.  F  =  (/) )  /\  -. +oo  e.  ran  F
)  ->  ph )
20 neqne 2802 . . . . 5  |-  ( -.  F  =  (/)  ->  F  =/=  (/) )
2120ad2antlr 763 . . . 4  |-  ( ( ( ph  /\  -.  F  =  (/) )  /\  -. +oo  e.  ran  F
)  ->  F  =/=  (/) )
22 simpr 477 . . . 4  |-  ( ( ( ph  /\  -.  F  =  (/) )  /\  -. +oo  e.  ran  F
)  ->  -. +oo  e.  ran  F )
23 0xr 10086 . . . . . 6  |-  0  e.  RR*
2423a1i 11 . . . . 5  |-  ( ( ( ph  /\  F  =/=  (/) )  /\  -. +oo  e.  ran  F )  ->  0  e.  RR* )
25 pnfxr 10092 . . . . . 6  |- +oo  e.  RR*
2625a1i 11 . . . . 5  |-  ( ( ( ph  /\  F  =/=  (/) )  /\  -. +oo  e.  ran  F )  -> +oo  e.  RR* )
279adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  X  e.  V )
2811adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  F : X --> ( 0 [,] +oo ) )
29 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  -. +oo  e.  ran  F )
3028, 29fge0iccico 40587 . . . . . . . 8  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  F : X --> ( 0 [,) +oo ) )
3127, 30sge0reval 40589 . . . . . . 7  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  (Σ^ `  F
)  =  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) ,  RR* ,  <  ) )
32 elinel2 3800 . . . . . . . . . . . . 13  |-  ( x  e.  ( ~P X  i^i  Fin )  ->  x  e.  Fin )
3332adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  x  e.  Fin )
3411ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  F : X --> ( 0 [,] +oo ) )
35 elinel1 3799 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( ~P X  i^i  Fin )  ->  x  e.  ~P X )
36 elpwi 4168 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ~P X  ->  x  C_  X )
3735, 36syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( ~P X  i^i  Fin )  ->  x  C_  X )
3837adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  x  C_  X )
3938adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  x  C_  X )
40 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  y  e.  x )
4139, 40sseldd 3604 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  y  e.  X )
4234, 41ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  ( F `  y )  e.  ( 0 [,] +oo ) )
4342adantllr 755 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  ( F `  y )  e.  ( 0 [,] +oo ) )
44 nne 2798 . . . . . . . . . . . . . . . . . 18  |-  ( -.  ( F `  y
)  =/= +oo  <->  ( F `  y )  = +oo )
4544biimpi 206 . . . . . . . . . . . . . . . . 17  |-  ( -.  ( F `  y
)  =/= +oo  ->  ( F `  y )  = +oo )
4645eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( -.  ( F `  y
)  =/= +oo  -> +oo  =  ( F `  y ) )
4746adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  /\  -.  ( F `  y )  =/= +oo )  -> +oo  =  ( F `  y ) )
48 ffun 6048 . . . . . . . . . . . . . . . . . . 19  |-  ( F : X --> ( 0 [,] +oo )  ->  Fun  F )
4911, 48syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  Fun  F )
50493ad2ant1 1082 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin )  /\  y  e.  x
)  ->  Fun  F )
51413impa 1259 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin )  /\  y  e.  x
)  ->  y  e.  X )
52 fdm 6051 . . . . . . . . . . . . . . . . . . . . 21  |-  ( F : X --> ( 0 [,] +oo )  ->  dom  F  =  X )
5311, 52syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  dom  F  =  X )
5453eqcomd 2628 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  X  =  dom  F
)
55543ad2ant1 1082 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin )  /\  y  e.  x
)  ->  X  =  dom  F )
5651, 55eleqtrd 2703 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin )  /\  y  e.  x
)  ->  y  e.  dom  F )
57 fvelrn 6352 . . . . . . . . . . . . . . . . 17  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( F `  y
)  e.  ran  F
)
5850, 56, 57syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin )  /\  y  e.  x
)  ->  ( F `  y )  e.  ran  F )
5958ad5ant134 1313 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
-. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  /\  -.  ( F `  y )  =/= +oo )  -> 
( F `  y
)  e.  ran  F
)
6047, 59eqeltrd 2701 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
-. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  /\  -.  ( F `  y )  =/= +oo )  -> +oo  e.  ran  F )
6129ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
-. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  /\  -.  ( F `  y )  =/= +oo )  ->  -. +oo  e.  ran  F
)
6260, 61condan 835 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  ( F `  y )  =/= +oo )
63 ge0xrre 39758 . . . . . . . . . . . . 13  |-  ( ( ( F `  y
)  e.  ( 0 [,] +oo )  /\  ( F `  y )  =/= +oo )  -> 
( F `  y
)  e.  RR )
6443, 62, 63syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  ( F `  y )  e.  RR )
6533, 64fsumrecl 14465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  sum_ y  e.  x  ( F `  y )  e.  RR )
6665ralrimiva 2966 . . . . . . . . . 10  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  A. x  e.  ( ~P X  i^i  Fin ) sum_ y  e.  x  ( F `  y )  e.  RR )
67 eqid 2622 . . . . . . . . . . 11  |-  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) )  =  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) )
6867rnmptss 6392 . . . . . . . . . 10  |-  ( A. x  e.  ( ~P X  i^i  Fin ) sum_ y  e.  x  ( F `  y )  e.  RR  ->  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) )  C_  RR )
6966, 68syl 17 . . . . . . . . 9  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  ran  ( x  e.  ( ~P X  i^i  Fin )  |-> 
sum_ y  e.  x  ( F `  y ) )  C_  RR )
70 ressxr 10083 . . . . . . . . . 10  |-  RR  C_  RR*
7170a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  RR  C_ 
RR* )
7269, 71sstrd 3613 . . . . . . . 8  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  ran  ( x  e.  ( ~P X  i^i  Fin )  |-> 
sum_ y  e.  x  ( F `  y ) )  C_  RR* )
73 supxrcl 12145 . . . . . . . 8  |-  ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) )  C_  RR*  ->  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) ,  RR* ,  <  )  e.  RR* )
7472, 73syl 17 . . . . . . 7  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) ,  RR* ,  <  )  e.  RR* )
7531, 74eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  (Σ^ `  F
)  e.  RR* )
7675adantlr 751 . . . . 5  |-  ( ( ( ph  /\  F  =/=  (/) )  /\  -. +oo  e.  ran  F )  ->  (Σ^ `  F )  e.  RR* )
7754adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  F  =/=  (/) )  ->  X  =  dom  F )
78 neneq 2800 . . . . . . . . . . . 12  |-  ( F  =/=  (/)  ->  -.  F  =  (/) )
7978adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  F  =/=  (/) )  ->  -.  F  =  (/) )
80 frel 6050 . . . . . . . . . . . . . 14  |-  ( F : X --> ( 0 [,] +oo )  ->  Rel  F )
8111, 80syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  Rel  F )
8281adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  =/=  (/) )  ->  Rel  F )
83 reldm0 5343 . . . . . . . . . . . 12  |-  ( Rel 
F  ->  ( F  =  (/)  <->  dom  F  =  (/) ) )
8482, 83syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  F  =/=  (/) )  ->  ( F  =  (/)  <->  dom  F  =  (/) ) )
8579, 84mtbid 314 . . . . . . . . . 10  |-  ( (
ph  /\  F  =/=  (/) )  ->  -.  dom  F  =  (/) )
8685neqned 2801 . . . . . . . . 9  |-  ( (
ph  /\  F  =/=  (/) )  ->  dom  F  =/=  (/) )
8777, 86eqnetrd 2861 . . . . . . . 8  |-  ( (
ph  /\  F  =/=  (/) )  ->  X  =/=  (/) )
88 n0 3931 . . . . . . . 8  |-  ( X  =/=  (/)  <->  E. z  z  e.  X )
8987, 88sylib 208 . . . . . . 7  |-  ( (
ph  /\  F  =/=  (/) )  ->  E. z 
z  e.  X )
9089adantr 481 . . . . . 6  |-  ( ( ( ph  /\  F  =/=  (/) )  /\  -. +oo  e.  ran  F )  ->  E. z  z  e.  X )
9123a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  0  e.  RR* )
9211ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  X )  ->  ( F `  z )  e.  ( 0 [,] +oo ) )
9392adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  ( F `  z )  e.  ( 0 [,] +oo )
)
94 nne 2798 . . . . . . . . . . . . . . . . 17  |-  ( -.  ( F `  z
)  =/= +oo  <->  ( F `  z )  = +oo )
9594biimpi 206 . . . . . . . . . . . . . . . 16  |-  ( -.  ( F `  z
)  =/= +oo  ->  ( F `  z )  = +oo )
9695eqcomd 2628 . . . . . . . . . . . . . . 15  |-  ( -.  ( F `  z
)  =/= +oo  -> +oo  =  ( F `  z ) )
9796adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  z  e.  X )  /\  -.  ( F `  z )  =/= +oo )  -> +oo  =  ( F `  z ) )
9811adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  X )  ->  F : X --> ( 0 [,] +oo ) )
9998, 48syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  X )  ->  Fun  F )
100 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  X )  ->  z  e.  X )
10154adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  X )  ->  X  =  dom  F )
102100, 101eleqtrd 2703 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  X )  ->  z  e.  dom  F )
103 fvelrn 6352 . . . . . . . . . . . . . . . . 17  |-  ( ( Fun  F  /\  z  e.  dom  F )  -> 
( F `  z
)  e.  ran  F
)
10499, 102, 103syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  z  e.  X )  ->  ( F `  z )  e.  ran  F )
105104adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  ( F `  z )  e.  ran  F )
106105adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  z  e.  X )  /\  -.  ( F `  z )  =/= +oo )  -> 
( F `  z
)  e.  ran  F
)
10797, 106eqeltrd 2701 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  z  e.  X )  /\  -.  ( F `  z )  =/= +oo )  -> +oo  e.  ran  F )
10829ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  z  e.  X )  /\  -.  ( F `  z )  =/= +oo )  ->  -. +oo  e.  ran  F
)
109107, 108condan 835 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  ( F `  z )  =/= +oo )
110 ge0xrre 39758 . . . . . . . . . . . 12  |-  ( ( ( F `  z
)  e.  ( 0 [,] +oo )  /\  ( F `  z )  =/= +oo )  -> 
( F `  z
)  e.  RR )
11193, 109, 110syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  ( F `  z )  e.  RR )
112111rexrd 10089 . . . . . . . . . 10  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  ( F `  z )  e.  RR* )
11375adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  (Σ^ `  F )  e.  RR* )
11423a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  X )  ->  0  e.  RR* )
11525a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  X )  -> +oo  e.  RR* )
116 iccgelb 12230 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  ( F `
 z )  e.  ( 0 [,] +oo ) )  ->  0  <_  ( F `  z
) )
117114, 115, 92, 116syl3anc 1326 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  X )  ->  0  <_  ( F `  z
) )
118117adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  0  <_  ( F `  z ) )
11972adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) )  C_  RR* )
120 snelpwi 4912 . . . . . . . . . . . . . . . 16  |-  ( z  e.  X  ->  { z }  e.  ~P X
)
121 snfi 8038 . . . . . . . . . . . . . . . . 17  |-  { z }  e.  Fin
122121a1i 11 . . . . . . . . . . . . . . . 16  |-  ( z  e.  X  ->  { z }  e.  Fin )
123120, 122elind 3798 . . . . . . . . . . . . . . 15  |-  ( z  e.  X  ->  { z }  e.  ( ~P X  i^i  Fin )
)
124123adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  { z }  e.  ( ~P X  i^i  Fin ) )
125 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  z  e.  X )
126111recnd 10068 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  ( F `  z )  e.  CC )
127 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  ( F `  y )  =  ( F `  z ) )
128127sumsn 14475 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  X  /\  ( F `  z )  e.  CC )  ->  sum_ y  e.  { z }  ( F `  y )  =  ( F `  z ) )
129125, 126, 128syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  sum_ y  e. 
{ z }  ( F `  y )  =  ( F `  z ) )
130129eqcomd 2628 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  ( F `  z )  =  sum_ y  e.  { z }  ( F `  y ) )
131 sumeq1 14419 . . . . . . . . . . . . . . . 16  |-  ( x  =  { z }  ->  sum_ y  e.  x  ( F `  y )  =  sum_ y  e.  {
z }  ( F `
 y ) )
132131eqeq2d 2632 . . . . . . . . . . . . . . 15  |-  ( x  =  { z }  ->  ( ( F `
 z )  = 
sum_ y  e.  x  ( F `  y )  <-> 
( F `  z
)  =  sum_ y  e.  { z }  ( F `  y )
) )
133132rspcev 3309 . . . . . . . . . . . . . 14  |-  ( ( { z }  e.  ( ~P X  i^i  Fin )  /\  ( F `  z )  =  sum_ y  e.  { z }  ( F `  y ) )  ->  E. x  e.  ( ~P X  i^i  Fin )
( F `  z
)  =  sum_ y  e.  x  ( F `  y ) )
134124, 130, 133syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  E. x  e.  ( ~P X  i^i  Fin ) ( F `  z )  =  sum_ y  e.  x  ( F `  y )
)
13567elrnmpt 5372 . . . . . . . . . . . . . 14  |-  ( ( F `  z )  e.  ( 0 [,] +oo )  ->  ( ( F `  z )  e.  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) )  <->  E. x  e.  ( ~P X  i^i  Fin ) ( F `  z )  =  sum_ y  e.  x  ( F `  y )
) )
13693, 135syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  ( ( F `  z )  e.  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) )  <->  E. x  e.  ( ~P X  i^i  Fin ) ( F `  z )  =  sum_ y  e.  x  ( F `  y )
) )
137134, 136mpbird 247 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  ( F `  z )  e.  ran  ( x  e.  ( ~P X  i^i  Fin )  |-> 
sum_ y  e.  x  ( F `  y ) ) )
138 supxrub 12154 . . . . . . . . . . . 12  |-  ( ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) )  C_  RR*  /\  ( F `  z )  e.  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) )  ->  ( F `  z )  <_  sup ( ran  (
x  e.  ( ~P X  i^i  Fin )  |-> 
sum_ y  e.  x  ( F `  y ) ) ,  RR* ,  <  ) )
139119, 137, 138syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  ( F `  z )  <_  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) ,  RR* ,  <  ) )
14031eqcomd 2628 . . . . . . . . . . . 12  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) ,  RR* ,  <  )  =  (Σ^ `  F ) )
141140adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) ,  RR* ,  <  )  =  (Σ^ `  F ) )
142139, 141breqtrd 4679 . . . . . . . . . 10  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  ( F `  z )  <_  (Σ^ `  F
) )
14391, 112, 113, 118, 142xrletrd 11993 . . . . . . . . 9  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  z  e.  X
)  ->  0  <_  (Σ^ `  F
) )
144143ex 450 . . . . . . . 8  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  (
z  e.  X  -> 
0  <_  (Σ^ `  F ) ) )
145144adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  F  =/=  (/) )  /\  -. +oo  e.  ran  F )  ->  ( z  e.  X  ->  0  <_  (Σ^ `  F
) ) )
146145exlimdv 1861 . . . . . 6  |-  ( ( ( ph  /\  F  =/=  (/) )  /\  -. +oo  e.  ran  F )  ->  ( E. z 
z  e.  X  -> 
0  <_  (Σ^ `  F ) ) )
14790, 146mpd 15 . . . . 5  |-  ( ( ( ph  /\  F  =/=  (/) )  /\  -. +oo  e.  ran  F )  ->  0  <_  (Σ^ `  F
) )
148 pnfge 11964 . . . . . . 7  |-  ( (Σ^ `  F
)  e.  RR*  ->  (Σ^ `  F
)  <_ +oo )
14975, 148syl 17 . . . . . 6  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  (Σ^ `  F
)  <_ +oo )
150149adantlr 751 . . . . 5  |-  ( ( ( ph  /\  F  =/=  (/) )  /\  -. +oo  e.  ran  F )  ->  (Σ^ `  F )  <_ +oo )
15124, 26, 76, 147, 150eliccxrd 39753 . . . 4  |-  ( ( ( ph  /\  F  =/=  (/) )  /\  -. +oo  e.  ran  F )  ->  (Σ^ `  F )  e.  ( 0 [,] +oo )
)
15219, 21, 22, 151syl21anc 1325 . . 3  |-  ( ( ( ph  /\  -.  F  =  (/) )  /\  -. +oo  e.  ran  F
)  ->  (Σ^ `  F )  e.  ( 0 [,] +oo )
)
15318, 152pm2.61dan 832 . 2  |-  ( (
ph  /\  -.  F  =  (/) )  ->  (Σ^ `  F
)  e.  ( 0 [,] +oo ) )
1548, 153pm2.61dan 832 1  |-  ( ph  ->  (Σ^ `  F )  e.  ( 0 [,] +oo )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115   Rel wrel 5119   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   [,]cicc 12178   sum_csu 14416  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0ge0  40601  sge0xrcl  40602  sge0split  40626  sge0iunmptlemre  40632  sge0iunmpt  40635  sge0nemnf  40637  sge0clmpt  40642  sge0isum  40644  psmeasure  40688  ovnsupge0  40771  ovnsubaddlem1  40784  sge0hsphoire  40803  hoidmvlelem1  40809  hspmbllem2  40841
  Copyright terms: Public domain W3C validator