Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0le Structured version   Visualization version   Unicode version

Theorem sge0le 40624
Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0le.x  |-  ( ph  ->  X  e.  V )
sge0le.F  |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )
sge0le.g  |-  ( ph  ->  G : X --> ( 0 [,] +oo ) )
sge0le.le  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  <_  ( G `  x
) )
Assertion
Ref Expression
sge0le  |-  ( ph  ->  (Σ^ `  F )  <_  (Σ^ `  G
) )
Distinct variable groups:    x, F    x, G    x, X    ph, x
Allowed substitution hint:    V( x)

Proof of Theorem sge0le
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sge0le.x . . . . . 6  |-  ( ph  ->  X  e.  V )
2 sge0le.F . . . . . 6  |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )
31, 2sge0xrcl 40602 . . . . 5  |-  ( ph  ->  (Σ^ `  F )  e.  RR* )
4 pnfge 11964 . . . . 5  |-  ( (Σ^ `  F
)  e.  RR*  ->  (Σ^ `  F
)  <_ +oo )
53, 4syl 17 . . . 4  |-  ( ph  ->  (Σ^ `  F )  <_ +oo )
65adantr 481 . . 3  |-  ( (
ph  /\  (Σ^ `  G )  = +oo )  ->  (Σ^ `  F )  <_ +oo )
7 id 22 . . . . 5  |-  ( (Σ^ `  G
)  = +oo  ->  (Σ^ `  G
)  = +oo )
87eqcomd 2628 . . . 4  |-  ( (Σ^ `  G
)  = +oo  -> +oo  =  (Σ^ `  G ) )
98adantl 482 . . 3  |-  ( (
ph  /\  (Σ^ `  G )  = +oo )  -> +oo  =  (Σ^ `  G
) )
106, 9breqtrd 4679 . 2  |-  ( (
ph  /\  (Σ^ `  G )  = +oo )  ->  (Σ^ `  F )  <_  (Σ^ `  G
) )
11 elinel2 3800 . . . . . . . 8  |-  ( y  e.  ( ~P X  i^i  Fin )  ->  y  e.  Fin )
1211adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  y  e.  Fin )
132adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  -.  (Σ^ `  G
)  = +oo )  ->  F : X --> ( 0 [,] +oo ) )
141adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  X  e.  V )
15 sge0le.g . . . . . . . . . . . . . 14  |-  ( ph  ->  G : X --> ( 0 [,] +oo ) )
1615adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  G : X
--> ( 0 [,] +oo ) )
17 simpr 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\ +oo  e.  ran  F )  -> +oo  e.  ran  F )
182ffnd 6046 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F  Fn  X )
19 fvelrnb 6243 . . . . . . . . . . . . . . . . 17  |-  ( F  Fn  X  ->  ( +oo  e.  ran  F  <->  E. x  e.  X  ( F `  x )  = +oo ) )
2018, 19syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( +oo  e.  ran  F  <->  E. x  e.  X  ( F `  x )  = +oo ) )
2120adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  ( +oo  e.  ran  F  <->  E. x  e.  X  ( F `  x )  = +oo ) )
2217, 21mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  E. x  e.  X  ( F `  x )  = +oo )
23 iccssxr 12256 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 0 [,] +oo )  C_  RR*
2415ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  X )  ->  ( G `  x )  e.  ( 0 [,] +oo ) )
2523, 24sseldi 3601 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  X )  ->  ( G `  x )  e.  RR* )
2625adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  X )  /\  ( F `  x )  = +oo )  ->  ( G `  x )  e.  RR* )
27 id 22 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F `  x )  = +oo  ->  ( F `  x )  = +oo )
2827eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F `  x )  = +oo  -> +oo  =  ( F `  x ) )
2928adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  X )  /\  ( F `  x )  = +oo )  -> +oo  =  ( F `  x ) )
30 sge0le.le . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  <_  ( G `  x
) )
3130adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  X )  /\  ( F `  x )  = +oo )  ->  ( F `  x )  <_  ( G `  x
) )
3229, 31eqbrtrd 4675 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  X )  /\  ( F `  x )  = +oo )  -> +oo  <_  ( G `  x ) )
3326, 32xrgepnfd 39547 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  X )  /\  ( F `  x )  = +oo )  ->  ( G `  x )  = +oo )
3433eqcomd 2628 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  X )  /\  ( F `  x )  = +oo )  -> +oo  =  ( G `  x ) )
3515ffnd 6046 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  G  Fn  X )
3635adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  X )  ->  G  Fn  X )
37 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
38 fnfvelrn 6356 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  Fn  X  /\  x  e.  X )  ->  ( G `  x
)  e.  ran  G
)
3936, 37, 38syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  X )  ->  ( G `  x )  e.  ran  G )
4039adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  X )  /\  ( F `  x )  = +oo )  ->  ( G `  x )  e.  ran  G )
4134, 40eqeltrd 2701 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  ( F `  x )  = +oo )  -> +oo  e.  ran  G )
4241ex 450 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  X )  ->  (
( F `  x
)  = +oo  -> +oo  e.  ran  G ) )
4342adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\ +oo  e.  ran  F )  /\  x  e.  X )  ->  ( ( F `  x )  = +oo  -> +oo  e.  ran  G
) )
4443rexlimdva 3031 . . . . . . . . . . . . . 14  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  ( E. x  e.  X  ( F `  x )  = +oo  -> +oo  e.  ran  G ) )
4522, 44mpd 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\ +oo  e.  ran  F )  -> +oo  e.  ran  G )
4614, 16, 45sge0pnfval 40590 . . . . . . . . . . . 12  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  (Σ^ `  G )  = +oo )
4746adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\ +oo  e.  ran  F )  ->  (Σ^ `  G )  = +oo )
48 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\ +oo  e.  ran  F )  ->  -.  (Σ^ `  G
)  = +oo )
4947, 48pm2.65da 600 . . . . . . . . . 10  |-  ( (
ph  /\  -.  (Σ^ `  G
)  = +oo )  ->  -. +oo  e.  ran  F )
5013, 49fge0iccico 40587 . . . . . . . . 9  |-  ( (
ph  /\  -.  (Σ^ `  G
)  = +oo )  ->  F : X --> ( 0 [,) +oo ) )
5150adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  F : X --> ( 0 [,) +oo ) )
52 elpwinss 39216 . . . . . . . . 9  |-  ( y  e.  ( ~P X  i^i  Fin )  ->  y  C_  X )
5352adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  y  C_  X )
5451, 53fssresd 6071 . . . . . . 7  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  ( F  |`  y ) : y --> ( 0 [,) +oo ) )
5512, 54sge0fsum 40604 . . . . . 6  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  (Σ^ `  ( F  |`  y ) )  =  sum_ x  e.  y  ( ( F  |`  y ) `  x
) )
56 rge0ssre 12280 . . . . . . . 8  |-  ( 0 [,) +oo )  C_  RR
5754ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  y )  ->  (
( F  |`  y
) `  x )  e.  ( 0 [,) +oo ) )
5856, 57sseldi 3601 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  y )  ->  (
( F  |`  y
) `  x )  e.  RR )
5912, 58fsumrecl 14465 . . . . . 6  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  sum_ x  e.  y  ( ( F  |`  y ) `  x )  e.  RR )
6055, 59eqeltrd 2701 . . . . 5  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  (Σ^ `  ( F  |`  y ) )  e.  RR )
6115adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  -.  (Σ^ `  G
)  = +oo )  ->  G : X --> ( 0 [,] +oo ) )
621adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  (Σ^ `  G
)  = +oo )  ->  X  e.  V )
63 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  (Σ^ `  G
)  = +oo )  ->  -.  (Σ^ `  G )  = +oo )
6462, 61sge0repnf 40603 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  (Σ^ `  G
)  = +oo )  ->  ( (Σ^ `  G )  e.  RR  <->  -.  (Σ^ `  G )  = +oo ) )
6563, 64mpbird 247 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  (Σ^ `  G
)  = +oo )  ->  (Σ^ `  G )  e.  RR )
6662, 61, 65sge0rern 40605 . . . . . . . . . 10  |-  ( (
ph  /\  -.  (Σ^ `  G
)  = +oo )  ->  -. +oo  e.  ran  G )
6761, 66fge0iccico 40587 . . . . . . . . 9  |-  ( (
ph  /\  -.  (Σ^ `  G
)  = +oo )  ->  G : X --> ( 0 [,) +oo ) )
6867adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  G : X --> ( 0 [,) +oo ) )
6968, 53fssresd 6071 . . . . . . 7  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  ( G  |`  y ) : y --> ( 0 [,) +oo ) )
7012, 69sge0fsum 40604 . . . . . 6  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  (Σ^ `  ( G  |`  y ) )  =  sum_ x  e.  y  ( ( G  |`  y ) `  x
) )
7169ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  y )  ->  (
( G  |`  y
) `  x )  e.  ( 0 [,) +oo ) )
7256, 71sseldi 3601 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  y )  ->  (
( G  |`  y
) `  x )  e.  RR )
7312, 72fsumrecl 14465 . . . . . 6  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  sum_ x  e.  y  ( ( G  |`  y ) `  x )  e.  RR )
7470, 73eqeltrd 2701 . . . . 5  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  (Σ^ `  ( G  |`  y ) )  e.  RR )
7565adantr 481 . . . . 5  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  (Σ^ `  G
)  e.  RR )
76 simplll 798 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  y )  ->  ph )
7753sselda 3603 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  y )  ->  x  e.  X )
7876, 77, 30syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  y )  ->  ( F `  x )  <_  ( G `  x
) )
79 fvres 6207 . . . . . . . . . 10  |-  ( x  e.  y  ->  (
( F  |`  y
) `  x )  =  ( F `  x ) )
8079adantl 482 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  y )  ->  (
( F  |`  y
) `  x )  =  ( F `  x ) )
81 fvres 6207 . . . . . . . . . 10  |-  ( x  e.  y  ->  (
( G  |`  y
) `  x )  =  ( G `  x ) )
8281adantl 482 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  y )  ->  (
( G  |`  y
) `  x )  =  ( G `  x ) )
8380, 82breq12d 4666 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  y )  ->  (
( ( F  |`  y ) `  x
)  <_  ( ( G  |`  y ) `  x )  <->  ( F `  x )  <_  ( G `  x )
) )
8478, 83mpbird 247 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  y )  ->  (
( F  |`  y
) `  x )  <_  ( ( G  |`  y ) `  x
) )
8512, 58, 72, 84fsumle 14531 . . . . . 6  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  sum_ x  e.  y  ( ( F  |`  y ) `  x )  <_  sum_ x  e.  y  ( ( G  |`  y ) `  x ) )
8655, 70breq12d 4666 . . . . . 6  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  (
(Σ^ `  ( F  |`  y
) )  <_  (Σ^ `  ( G  |`  y ) )  <->  sum_ x  e.  y  ( ( F  |`  y
) `  x )  <_ 
sum_ x  e.  y 
( ( G  |`  y ) `  x
) ) )
8785, 86mpbird 247 . . . . 5  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  (Σ^ `  ( F  |`  y ) )  <_  (Σ^ `  ( G  |`  y
) ) )
881adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  X  e.  V )
8915adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  G : X --> ( 0 [,] +oo ) )
9088, 89sge0less 40609 . . . . . 6  |-  ( (
ph  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  (Σ^ `  ( G  |`  y ) )  <_  (Σ^ `  G ) )
9190adantlr 751 . . . . 5  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  (Σ^ `  ( G  |`  y ) )  <_  (Σ^ `  G ) )
9260, 74, 75, 87, 91letrd 10194 . . . 4  |-  ( ( ( ph  /\  -.  (Σ^ `  G )  = +oo )  /\  y  e.  ( ~P X  i^i  Fin ) )  ->  (Σ^ `  ( F  |`  y ) )  <_  (Σ^ `  G ) )
9392ralrimiva 2966 . . 3  |-  ( (
ph  /\  -.  (Σ^ `  G
)  = +oo )  ->  A. y  e.  ( ~P X  i^i  Fin ) (Σ^ `  ( F  |`  y
) )  <_  (Σ^ `  G
) )
9462, 61sge0xrcl 40602 . . . 4  |-  ( (
ph  /\  -.  (Σ^ `  G
)  = +oo )  ->  (Σ^ `  G )  e.  RR* )
9562, 13, 94sge0lefi 40615 . . 3  |-  ( (
ph  /\  -.  (Σ^ `  G
)  = +oo )  ->  ( (Σ^ `  F )  <_  (Σ^ `  G
)  <->  A. y  e.  ( ~P X  i^i  Fin ) (Σ^ `  ( F  |`  y
) )  <_  (Σ^ `  G
) ) )
9693, 95mpbird 247 . 2  |-  ( (
ph  /\  -.  (Σ^ `  G
)  = +oo )  ->  (Σ^ `  F )  <_  (Σ^ `  G
) )
9710, 96pm2.61dan 832 1  |-  ( ph  ->  (Σ^ `  F )  <_  (Σ^ `  G
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936   +oocpnf 10071   RR*cxr 10073    <_ cle 10075   [,)cico 12177   [,]cicc 12178   sum_csu 14416  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0lempt  40627
  Copyright terms: Public domain W3C validator