Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0tsms Structured version   Visualization version   Unicode version

Theorem sge0tsms 40597
Description: Σ^ applied to a nonnegative function (its meaningful domain) is the same as the infinite group sum (that's always convergent, in this case). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0tsms.g  |-  G  =  ( RR*ss  ( 0 [,] +oo ) )
sge0tsms.x  |-  ( ph  ->  X  e.  V )
sge0tsms.f  |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )
Assertion
Ref Expression
sge0tsms  |-  ( ph  ->  (Σ^ `  F )  e.  ( G tsums  F ) )

Proof of Theorem sge0tsms
Dummy variables  x  s  t  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  )  =  sup ( ran  (
x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x
) ) ) , 
RR* ,  <  )
21a1i 11 . . 3  |-  ( ph  ->  sup ( ran  (
x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x
) ) ) , 
RR* ,  <  )  =  sup ( ran  (
x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x
) ) ) , 
RR* ,  <  ) )
3 xrltso 11974 . . . . . 6  |-  <  Or  RR*
43supex 8369 . . . . 5  |-  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  )  e.  _V
54a1i 11 . . . 4  |-  ( ph  ->  sup ( ran  (
x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x
) ) ) , 
RR* ,  <  )  e. 
_V )
6 elsng 4191 . . . 4  |-  ( sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  )  e.  _V  ->  ( sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  )  e.  { sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  ) } 
<->  sup ( ran  (
x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x
) ) ) , 
RR* ,  <  )  =  sup ( ran  (
x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x
) ) ) , 
RR* ,  <  ) ) )
75, 6syl 17 . . 3  |-  ( ph  ->  ( sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  )  e.  { sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  ) } 
<->  sup ( ran  (
x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x
) ) ) , 
RR* ,  <  )  =  sup ( ran  (
x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x
) ) ) , 
RR* ,  <  ) ) )
82, 7mpbird 247 . 2  |-  ( ph  ->  sup ( ran  (
x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x
) ) ) , 
RR* ,  <  )  e. 
{ sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  ) } )
9 sge0tsms.x . . . . . . 7  |-  ( ph  ->  X  e.  V )
109adantr 481 . . . . . 6  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  X  e.  V )
11 sge0tsms.f . . . . . . 7  |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )
1211adantr 481 . . . . . 6  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  F : X
--> ( 0 [,] +oo ) )
13 simpr 477 . . . . . 6  |-  ( (
ph  /\ +oo  e.  ran  F )  -> +oo  e.  ran  F )
1410, 12, 13sge0pnfval 40590 . . . . 5  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  (Σ^ `  F )  = +oo )
15 ffn 6045 . . . . . . . . . 10  |-  ( F : X --> ( 0 [,] +oo )  ->  F  Fn  X )
1611, 15syl 17 . . . . . . . . 9  |-  ( ph  ->  F  Fn  X )
1716adantr 481 . . . . . . . 8  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  F  Fn  X )
18 fvelrnb 6243 . . . . . . . 8  |-  ( F  Fn  X  ->  ( +oo  e.  ran  F  <->  E. y  e.  X  ( F `  y )  = +oo ) )
1917, 18syl 17 . . . . . . 7  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  ( +oo  e.  ran  F  <->  E. y  e.  X  ( F `  y )  = +oo ) )
2013, 19mpbid 222 . . . . . 6  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  E. y  e.  X  ( F `  y )  = +oo )
21 iccssxr 12256 . . . . . . . . . . . . . 14  |-  ( 0 [,] +oo )  C_  RR*
22 sge0tsms.g . . . . . . . . . . . . . . 15  |-  G  =  ( RR*ss  ( 0 [,] +oo ) )
23 simpr 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  x  e.  ( ~P X  i^i  Fin ) )
2411adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  F : X --> ( 0 [,] +oo ) )
25 elinel1 3799 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( ~P X  i^i  Fin )  ->  x  e.  ~P X )
26 elpwi 4168 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ~P X  ->  x  C_  X )
2725, 26syl 17 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ~P X  i^i  Fin )  ->  x  C_  X )
2827adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  x  C_  X )
29 fssres 6070 . . . . . . . . . . . . . . . 16  |-  ( ( F : X --> ( 0 [,] +oo )  /\  x  C_  X )  -> 
( F  |`  x
) : x --> ( 0 [,] +oo ) )
3024, 28, 29syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  ( F  |`  x ) : x --> ( 0 [,] +oo ) )
31 elinel2 3800 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ~P X  i^i  Fin )  ->  x  e.  Fin )
3231adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  x  e.  Fin )
33 0red 10041 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  0  e.  RR )
3430, 32, 33fdmfifsupp 8285 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  ( F  |`  x ) finSupp  0
)
3522, 23, 30, 34gsumge0cl 40588 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  x
) )  e.  ( 0 [,] +oo )
)
3621, 35sseldi 3601 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  x
) )  e.  RR* )
3736ralrimiva 2966 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  ( ~P X  i^i  Fin ) ( G  gsumg  ( F  |`  x ) )  e. 
RR* )
38373ad2ant1 1082 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  A. x  e.  ( ~P X  i^i  Fin ) ( G  gsumg  ( F  |`  x ) )  e. 
RR* )
39 eqid 2622 . . . . . . . . . . . 12  |-  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  x ) ) )  =  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x
) ) )
4039rnmptss 6392 . . . . . . . . . . 11  |-  ( A. x  e.  ( ~P X  i^i  Fin ) ( G  gsumg  ( F  |`  x
) )  e.  RR*  ->  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) 
C_  RR* )
4138, 40syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) 
C_  RR* )
42 snelpwi 4912 . . . . . . . . . . . . . 14  |-  ( y  e.  X  ->  { y }  e.  ~P X
)
43 snfi 8038 . . . . . . . . . . . . . . 15  |-  { y }  e.  Fin
4443a1i 11 . . . . . . . . . . . . . 14  |-  ( y  e.  X  ->  { y }  e.  Fin )
4542, 44elind 3798 . . . . . . . . . . . . 13  |-  ( y  e.  X  ->  { y }  e.  ( ~P X  i^i  Fin )
)
46453ad2ant2 1083 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  { y }  e.  ( ~P X  i^i  Fin ) )
4711adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  X )  ->  F : X --> ( 0 [,] +oo ) )
48 snssi 4339 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  X  ->  { y }  C_  X )
4948adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  X )  ->  { y }  C_  X )
5047, 49fssresd 6071 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  X )  ->  ( F  |`  { y } ) : { y } --> ( 0 [,] +oo ) )
5150feqmptd 6249 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  X )  ->  ( F  |`  { y } )  =  ( x  e.  { y } 
|->  ( ( F  |`  { y } ) `
 x ) ) )
52 fvres 6207 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  { y }  ->  ( ( F  |`  { y } ) `
 x )  =  ( F `  x
) )
5352mpteq2ia 4740 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  { y } 
|->  ( ( F  |`  { y } ) `
 x ) )  =  ( x  e. 
{ y }  |->  ( F `  x ) )
5453a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  X )  ->  (
x  e.  { y }  |->  ( ( F  |`  { y } ) `
 x ) )  =  ( x  e. 
{ y }  |->  ( F `  x ) ) )
5551, 54eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  X )  ->  ( F  |`  { y } )  =  ( x  e.  { y } 
|->  ( F `  x
) ) )
5655oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  X )  ->  ( G  gsumg  ( F  |`  { y } ) )  =  ( G  gsumg  ( x  e.  {
y }  |->  ( F `
 x ) ) ) )
57563adant3 1081 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  ( G  gsumg  ( F  |`  { y } ) )  =  ( G 
gsumg  ( x  e.  { y }  |->  ( F `  x ) ) ) )
58 xrge0cmn 19788 . . . . . . . . . . . . . . . . 17  |-  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd
5922, 58eqeltri 2697 . . . . . . . . . . . . . . . 16  |-  G  e. CMnd
60 cmnmnd 18208 . . . . . . . . . . . . . . . 16  |-  ( G  e. CMnd  ->  G  e.  Mnd )
6159, 60ax-mp 5 . . . . . . . . . . . . . . 15  |-  G  e. 
Mnd
6261a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  G  e.  Mnd )
63 simp2 1062 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  y  e.  X
)
6411ffvelrnda 6359 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  X )  ->  ( F `  y )  e.  ( 0 [,] +oo ) )
65643adant3 1081 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  ( F `  y )  e.  ( 0 [,] +oo )
)
66 df-ss 3588 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0 [,] +oo )  C_ 
RR* 
<->  ( ( 0 [,] +oo )  i^i  RR* )  =  ( 0 [,] +oo ) )
6721, 66mpbi 220 . . . . . . . . . . . . . . . . 17  |-  ( ( 0 [,] +oo )  i^i  RR* )  =  ( 0 [,] +oo )
6867eqcomi 2631 . . . . . . . . . . . . . . . 16  |-  ( 0 [,] +oo )  =  ( ( 0 [,] +oo )  i^i  RR* )
69 ovex 6678 . . . . . . . . . . . . . . . . 17  |-  ( 0 [,] +oo )  e. 
_V
70 xrsbas 19762 . . . . . . . . . . . . . . . . . 18  |-  RR*  =  ( Base `  RR*s )
7122, 70ressbas 15930 . . . . . . . . . . . . . . . . 17  |-  ( ( 0 [,] +oo )  e.  _V  ->  ( (
0 [,] +oo )  i^i  RR* )  =  (
Base `  G )
)
7269, 71ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( 0 [,] +oo )  i^i  RR* )  =  (
Base `  G )
7368, 72eqtri 2644 . . . . . . . . . . . . . . 15  |-  ( 0 [,] +oo )  =  ( Base `  G
)
74 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
7573, 74gsumsn 18354 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Mnd  /\  y  e.  X  /\  ( F `  y )  e.  ( 0 [,] +oo ) )  ->  ( G  gsumg  ( x  e.  {
y }  |->  ( F `
 x ) ) )  =  ( F `
 y ) )
7662, 63, 65, 75syl3anc 1326 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  ( G  gsumg  ( x  e.  { y } 
|->  ( F `  x
) ) )  =  ( F `  y
) )
77 simp3 1063 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  ( F `  y )  = +oo )
7857, 76, 773eqtrrd 2661 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  -> +oo  =  ( G  gsumg  ( F  |`  { y } ) ) )
79 reseq2 5391 . . . . . . . . . . . . . . 15  |-  ( x  =  { y }  ->  ( F  |`  x )  =  ( F  |`  { y } ) )
8079oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( x  =  { y }  ->  ( G  gsumg  ( F  |`  x ) )  =  ( G  gsumg  ( F  |`  { y } ) ) )
8180eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( x  =  { y }  ->  ( +oo  =  ( G  gsumg  ( F  |`  x
) )  <-> +oo  =  ( G  gsumg  ( F  |`  { y } ) ) ) )
8281rspcev 3309 . . . . . . . . . . . 12  |-  ( ( { y }  e.  ( ~P X  i^i  Fin )  /\ +oo  =  ( G  gsumg  ( F  |`  { y } ) ) )  ->  E. x  e.  ( ~P X  i^i  Fin ) +oo  =  ( G 
gsumg  ( F  |`  x ) ) )
8346, 78, 82syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  E. x  e.  ( ~P X  i^i  Fin ) +oo  =  ( G 
gsumg  ( F  |`  x ) ) )
84 pnfxr 10092 . . . . . . . . . . . . 13  |- +oo  e.  RR*
8584a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  -> +oo  e.  RR* )
8639elrnmpt 5372 . . . . . . . . . . . 12  |-  ( +oo  e.  RR*  ->  ( +oo  e.  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) )  <->  E. x  e.  ( ~P X  i^i  Fin ) +oo  =  ( G  gsumg  ( F  |`  x )
) ) )
8785, 86syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  ( +oo  e.  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) )  <->  E. x  e.  ( ~P X  i^i  Fin ) +oo  =  ( G  gsumg  ( F  |`  x )
) ) )
8883, 87mpbird 247 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  -> +oo  e.  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x
) ) ) )
89 supxrpnf 12148 . . . . . . . . . 10  |-  ( ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) 
C_  RR*  /\ +oo  e.  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) )  ->  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  )  = +oo )
9041, 88, 89syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  sup ( ran  (
x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x
) ) ) , 
RR* ,  <  )  = +oo )
91903exp 1264 . . . . . . . 8  |-  ( ph  ->  ( y  e.  X  ->  ( ( F `  y )  = +oo  ->  sup ( ran  (
x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x
) ) ) , 
RR* ,  <  )  = +oo ) ) )
9291adantr 481 . . . . . . 7  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  ( y  e.  X  ->  ( ( F `  y )  = +oo  ->  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  )  = +oo ) ) )
9392rexlimdv 3030 . . . . . 6  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  ( E. y  e.  X  ( F `  y )  = +oo  ->  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  )  = +oo ) )
9420, 93mpd 15 . . . . 5  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  )  = +oo )
9514, 94eqtr4d 2659 . . . 4  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  (Σ^ `  F )  =  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  )
)
969adantr 481 . . . . . 6  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  X  e.  V )
9711adantr 481 . . . . . . 7  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  F : X --> ( 0 [,] +oo ) )
98 simpr 477 . . . . . . 7  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  -. +oo  e.  ran  F )
9997, 98fge0iccico 40587 . . . . . 6  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  F : X --> ( 0 [,) +oo ) )
10096, 99sge0reval 40589 . . . . 5  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  (Σ^ `  F
)  =  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) ,  RR* ,  <  ) )
10124, 28feqresmpt 6250 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  ( F  |`  x )  =  ( y  e.  x  |->  ( F `  y
) ) )
102101adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  ( F  |`  x )  =  ( y  e.  x  |->  ( F `  y
) ) )
103102oveq2d 6666 . . . . . . . . 9  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  x
) )  =  ( G  gsumg  ( y  e.  x  |->  ( F `  y
) ) ) )
10422fveq2i 6194 . . . . . . . . . . 11  |-  ( +g  `  G )  =  ( +g  `  ( RR*ss  ( 0 [,] +oo ) ) )
105 eqid 2622 . . . . . . . . . . . . . 14  |-  ( RR*ss  ( 0 [,] +oo ) )  =  (
RR*ss  ( 0 [,] +oo ) )
106 xrsadd 19763 . . . . . . . . . . . . . 14  |-  +e 
=  ( +g  `  RR*s
)
107105, 106ressplusg 15993 . . . . . . . . . . . . 13  |-  ( ( 0 [,] +oo )  e.  _V  ->  +e 
=  ( +g  `  ( RR*ss  ( 0 [,] +oo ) ) ) )
10869, 107ax-mp 5 . . . . . . . . . . . 12  |-  +e 
=  ( +g  `  ( RR*ss  ( 0 [,] +oo ) ) )
109108eqcomi 2631 . . . . . . . . . . 11  |-  ( +g  `  ( RR*ss  ( 0 [,] +oo ) ) )  =  +e
110104, 109eqtr2i 2645 . . . . . . . . . 10  |-  +e 
=  ( +g  `  G
)
11122oveq1i 6660 . . . . . . . . . . 11  |-  ( Gs  ( 0 [,) +oo )
)  =  ( (
RR*ss  ( 0 [,] +oo ) )s  ( 0 [,) +oo ) )
112 icossicc 12260 . . . . . . . . . . . . 13  |-  ( 0 [,) +oo )  C_  ( 0 [,] +oo )
11369, 112pm3.2i 471 . . . . . . . . . . . 12  |-  ( ( 0 [,] +oo )  e.  _V  /\  ( 0 [,) +oo )  C_  ( 0 [,] +oo ) )
114 ressabs 15939 . . . . . . . . . . . 12  |-  ( ( ( 0 [,] +oo )  e.  _V  /\  (
0 [,) +oo )  C_  ( 0 [,] +oo ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )s  ( 0 [,) +oo ) )  =  (
RR*ss  ( 0 [,) +oo ) ) )
115113, 114ax-mp 5 . . . . . . . . . . 11  |-  ( (
RR*ss  ( 0 [,] +oo ) )s  ( 0 [,) +oo ) )  =  (
RR*ss  ( 0 [,) +oo ) )
116111, 115eqtr2i 2645 . . . . . . . . . 10  |-  ( RR*ss  ( 0 [,) +oo ) )  =  ( Gs  ( 0 [,) +oo ) )
11759elexi 3213 . . . . . . . . . . 11  |-  G  e. 
_V
118117a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  G  e.  _V )
119 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  x  e.  ( ~P X  i^i  Fin ) )
120112a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  (
0 [,) +oo )  C_  ( 0 [,] +oo ) )
121 0xr 10086 . . . . . . . . . . . . 13  |-  0  e.  RR*
122121a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  0  e.  RR* )
12384a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  -> +oo  e.  RR* )
12497ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  F : X --> ( 0 [,] +oo ) )
12527sselda 3603 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( ~P X  i^i  Fin )  /\  y  e.  x
)  ->  y  e.  X )
126125adantll 750 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  y  e.  X )
127124, 126ffvelrnd 6360 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  ( F `  y )  e.  ( 0 [,] +oo ) )
12821, 127sseldi 3601 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  ( F `  y )  e.  RR* )
129 iccgelb 12230 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  ( F `
 y )  e.  ( 0 [,] +oo ) )  ->  0  <_  ( F `  y
) )
130122, 123, 127, 129syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  0  <_  ( F `  y
) )
131 id 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F `  y )  = +oo  ->  ( F `  y )  = +oo )
132131eqcomd 2628 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  y )  = +oo  -> +oo  =  ( F `  y ) )
133132adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x
)  /\  ( F `  y )  = +oo )  -> +oo  =  ( F `  y )
)
134 ffun 6048 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( F : X --> ( 0 [,] +oo )  ->  Fun  F )
13511, 134syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  Fun  F )
136135ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  Fun  F )
13723, 125sylan 488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  y  e.  X )
138 fdm 6051 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( F : X --> ( 0 [,] +oo )  ->  dom  F  =  X )
13911, 138syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  dom  F  =  X )
140139eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  X  =  dom  F
)
141140ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  X  =  dom  F )
142137, 141eleqtrd 2703 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  y  e.  dom  F )
143 fvelrn 6352 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( F `  y
)  e.  ran  F
)
144136, 142, 143syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  ( F `  y )  e.  ran  F )
145144adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x
)  /\  ( F `  y )  = +oo )  ->  ( F `  y )  e.  ran  F )
146133, 145eqeltrd 2701 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x
)  /\  ( F `  y )  = +oo )  -> +oo  e.  ran  F )
147146adantlllr 39199 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\ 
-. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  /\  ( F `  y )  = +oo )  -> +oo  e.  ran  F )
14898ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\ 
-. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  /\  ( F `  y )  = +oo )  ->  -. +oo  e.  ran  F )
149147, 148pm2.65da 600 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  -.  ( F `  y )  = +oo )
150149neqned 2801 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  ( F `  y )  =/= +oo )
151 ge0xrre 39758 . . . . . . . . . . . . . 14  |-  ( ( ( F `  y
)  e.  ( 0 [,] +oo )  /\  ( F `  y )  =/= +oo )  -> 
( F `  y
)  e.  RR )
152127, 150, 151syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  ( F `  y )  e.  RR )
153152ltpnfd 11955 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  ( F `  y )  < +oo )
154122, 123, 128, 130, 153elicod 12224 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  ( F `  y )  e.  ( 0 [,) +oo ) )
155 eqid 2622 . . . . . . . . . . 11  |-  ( y  e.  x  |->  ( F `
 y ) )  =  ( y  e.  x  |->  ( F `  y ) )
156154, 155fmptd 6385 . . . . . . . . . 10  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  (
y  e.  x  |->  ( F `  y ) ) : x --> ( 0 [,) +oo ) )
157 0e0icopnf 12282 . . . . . . . . . . 11  |-  0  e.  ( 0 [,) +oo )
158157a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  0  e.  ( 0 [,) +oo ) )
15921sseli 3599 . . . . . . . . . . . 12  |-  ( y  e.  ( 0 [,] +oo )  ->  y  e. 
RR* )
160 xaddid2 12073 . . . . . . . . . . . . 13  |-  ( y  e.  RR*  ->  ( 0 +e y )  =  y )
161 xaddid1 12072 . . . . . . . . . . . . 13  |-  ( y  e.  RR*  ->  ( y +e 0 )  =  y )
162160, 161jca 554 . . . . . . . . . . . 12  |-  ( y  e.  RR*  ->  ( ( 0 +e y )  =  y  /\  ( y +e 0 )  =  y ) )
163159, 162syl 17 . . . . . . . . . . 11  |-  ( y  e.  ( 0 [,] +oo )  ->  ( ( 0 +e y )  =  y  /\  ( y +e 0 )  =  y ) )
164163adantl 482 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  ( 0 [,] +oo ) )  ->  (
( 0 +e
y )  =  y  /\  ( y +e 0 )  =  y ) )
16573, 110, 116, 118, 119, 120, 156, 158, 164gsumress 17276 . . . . . . . . 9  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  ( G  gsumg  ( y  e.  x  |->  ( F `  y
) ) )  =  ( ( RR*ss  (
0 [,) +oo )
)  gsumg  ( y  e.  x  |->  ( F `  y
) ) ) )
166 rege0subm 19802 . . . . . . . . . . . . 13  |-  ( 0 [,) +oo )  e.  (SubMnd ` fld )
167166a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  (
0 [,) +oo )  e.  (SubMnd ` fld ) )
168 eqid 2622 . . . . . . . . . . . 12  |-  (flds  ( 0 [,) +oo ) )  =  (flds  ( 0 [,) +oo ) )
169119, 167, 156, 168gsumsubm 17373 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  (fld  gsumg  ( y  e.  x  |->  ( F `  y
) ) )  =  ( (flds  ( 0 [,) +oo )
)  gsumg  ( y  e.  x  |->  ( F `  y
) ) ) )
170 eqidd 2623 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  (
(flds  (
0 [,) +oo )
)  gsumg  ( y  e.  x  |->  ( F `  y
) ) )  =  ( (flds  ( 0 [,) +oo )
)  gsumg  ( y  e.  x  |->  ( F `  y
) ) ) )
171 vex 3203 . . . . . . . . . . . . . 14  |-  x  e. 
_V
172171mptex 6486 . . . . . . . . . . . . 13  |-  ( y  e.  x  |->  ( F `
 y ) )  e.  _V
173172a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  (
y  e.  x  |->  ( F `  y ) )  e.  _V )
174 ovexd 6680 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  (flds  ( 0 [,) +oo ) )  e.  _V )
175 ovexd 6680 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  ( RR*ss  ( 0 [,) +oo ) )  e.  _V )
176 rge0ssre 12280 . . . . . . . . . . . . . . . . 17  |-  ( 0 [,) +oo )  C_  RR
177 ax-resscn 9993 . . . . . . . . . . . . . . . . 17  |-  RR  C_  CC
178176, 177sstri 3612 . . . . . . . . . . . . . . . 16  |-  ( 0 [,) +oo )  C_  CC
179 cnfldbas 19750 . . . . . . . . . . . . . . . . 17  |-  CC  =  ( Base ` fld )
180168, 179ressbas2 15931 . . . . . . . . . . . . . . . 16  |-  ( ( 0 [,) +oo )  C_  CC  ->  ( 0 [,) +oo )  =  ( Base `  (flds  ( 0 [,) +oo ) ) ) )
181178, 180ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 0 [,) +oo )  =  ( Base `  (flds  ( 0 [,) +oo ) ) )
182181eqcomi 2631 . . . . . . . . . . . . . 14  |-  ( Base `  (flds  ( 0 [,) +oo )
) )  =  ( 0 [,) +oo )
183112, 21sstri 3612 . . . . . . . . . . . . . . 15  |-  ( 0 [,) +oo )  C_  RR*
184 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( RR*ss  ( 0 [,) +oo ) )  =  (
RR*ss  ( 0 [,) +oo ) )
185184, 70ressbas2 15931 . . . . . . . . . . . . . . 15  |-  ( ( 0 [,) +oo )  C_ 
RR*  ->  ( 0 [,) +oo )  =  ( Base `  ( RR*ss  (
0 [,) +oo )
) ) )
186183, 185ax-mp 5 . . . . . . . . . . . . . 14  |-  ( 0 [,) +oo )  =  ( Base `  ( RR*ss  ( 0 [,) +oo ) ) )
187182, 186eqtri 2644 . . . . . . . . . . . . 13  |-  ( Base `  (flds  ( 0 [,) +oo )
) )  =  (
Base `  ( RR*ss  ( 0 [,) +oo ) ) )
188187a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  ( Base `  (flds  ( 0 [,) +oo )
) )  =  (
Base `  ( RR*ss  ( 0 [,) +oo ) ) ) )
189 rge0srg 19817 . . . . . . . . . . . . . . 15  |-  (flds  ( 0 [,) +oo ) )  e. SRing
190189a1i 11 . . . . . . . . . . . . . 14  |-  ( ( s  e.  ( Base `  (flds  ( 0 [,) +oo )
) )  /\  t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )  ->  (flds  ( 0 [,) +oo ) )  e. SRing )
191 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( s  e.  ( Base `  (flds  ( 0 [,) +oo )
) )  /\  t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )  ->  s  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )
192 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( s  e.  ( Base `  (flds  ( 0 [,) +oo )
) )  /\  t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )  ->  t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )
193 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( Base `  (flds  ( 0 [,) +oo )
) )  =  (
Base `  (flds  ( 0 [,) +oo ) ) )
194 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( +g  `  (flds  ( 0 [,) +oo )
) )  =  ( +g  `  (flds  ( 0 [,) +oo ) ) )
195193, 194srgacl 18524 . . . . . . . . . . . . . 14  |-  ( ( (flds  ( 0 [,) +oo )
)  e. SRing  /\  s  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  /\  t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )  ->  (
s ( +g  `  (flds  ( 0 [,) +oo ) ) ) t )  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )
196190, 191, 192, 195syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( s  e.  ( Base `  (flds  ( 0 [,) +oo )
) )  /\  t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )  ->  (
s ( +g  `  (flds  ( 0 [,) +oo ) ) ) t )  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )
197196adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  (
s  e.  ( Base `  (flds  ( 0 [,) +oo )
) )  /\  t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) ) )  -> 
( s ( +g  `  (flds  ( 0 [,) +oo )
) ) t )  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )
198176a1i 11 . . . . . . . . . . . . . . . 16  |-  ( s  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  ->  ( 0 [,) +oo )  C_  RR )
199 id 22 . . . . . . . . . . . . . . . . 17  |-  ( s  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  ->  s  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )
200199, 182syl6eleq 2711 . . . . . . . . . . . . . . . 16  |-  ( s  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  ->  s  e.  ( 0 [,) +oo ) )
201198, 200sseldd 3604 . . . . . . . . . . . . . . 15  |-  ( s  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  ->  s  e.  RR )
202201adantr 481 . . . . . . . . . . . . . 14  |-  ( ( s  e.  ( Base `  (flds  ( 0 [,) +oo )
) )  /\  t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )  ->  s  e.  RR )
203176a1i 11 . . . . . . . . . . . . . . . 16  |-  ( t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  ->  ( 0 [,) +oo )  C_  RR )
204 id 22 . . . . . . . . . . . . . . . . 17  |-  ( t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  ->  t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )
205204, 182syl6eleq 2711 . . . . . . . . . . . . . . . 16  |-  ( t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  ->  t  e.  ( 0 [,) +oo ) )
206203, 205sseldd 3604 . . . . . . . . . . . . . . 15  |-  ( t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  ->  t  e.  RR )
207206adantl 482 . . . . . . . . . . . . . 14  |-  ( ( s  e.  ( Base `  (flds  ( 0 [,) +oo )
) )  /\  t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )  ->  t  e.  RR )
208 rexadd 12063 . . . . . . . . . . . . . . . 16  |-  ( ( s  e.  RR  /\  t  e.  RR )  ->  ( s +e
t )  =  ( s  +  t ) )
209208eqcomd 2628 . . . . . . . . . . . . . . 15  |-  ( ( s  e.  RR  /\  t  e.  RR )  ->  ( s  +  t )  =  ( s +e t ) )
210166elexi 3213 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0 [,) +oo )  e. 
_V
211 cnfldadd 19751 . . . . . . . . . . . . . . . . . . . . 21  |-  +  =  ( +g  ` fld )
212168, 211ressplusg 15993 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0 [,) +oo )  e.  _V  ->  +  =  ( +g  `  (flds  ( 0 [,) +oo ) ) ) )
213210, 212ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  +  =  ( +g  `  (flds  ( 0 [,) +oo ) ) )
214213, 211eqtr3i 2646 . . . . . . . . . . . . . . . . . 18  |-  ( +g  `  (flds  ( 0 [,) +oo )
) )  =  ( +g  ` fld )
215214, 211eqtr4i 2647 . . . . . . . . . . . . . . . . 17  |-  ( +g  `  (flds  ( 0 [,) +oo )
) )  =  +
216215oveqi 6663 . . . . . . . . . . . . . . . 16  |-  ( s ( +g  `  (flds  ( 0 [,) +oo ) ) ) t )  =  ( s  +  t )
217216a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( s  e.  RR  /\  t  e.  RR )  ->  ( s ( +g  `  (flds  ( 0 [,) +oo )
) ) t )  =  ( s  +  t ) )
218184, 106ressplusg 15993 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0 [,) +oo )  e.  _V  ->  +e 
=  ( +g  `  ( RR*ss  ( 0 [,) +oo ) ) ) )
219210, 218ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  +e 
=  ( +g  `  ( RR*ss  ( 0 [,) +oo ) ) )
220219eqcomi 2631 . . . . . . . . . . . . . . . . 17  |-  ( +g  `  ( RR*ss  ( 0 [,) +oo ) ) )  =  +e
221220oveqi 6663 . . . . . . . . . . . . . . . 16  |-  ( s ( +g  `  ( RR*ss  ( 0 [,) +oo ) ) ) t )  =  ( s +e t )
222221a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( s  e.  RR  /\  t  e.  RR )  ->  ( s ( +g  `  ( RR*ss  ( 0 [,) +oo ) ) ) t )  =  ( s +e
t ) )
223209, 217, 2223eqtr4d 2666 . . . . . . . . . . . . . 14  |-  ( ( s  e.  RR  /\  t  e.  RR )  ->  ( s ( +g  `  (flds  ( 0 [,) +oo )
) ) t )  =  ( s ( +g  `  ( RR*ss  ( 0 [,) +oo ) ) ) t ) )
224202, 207, 223syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( s  e.  ( Base `  (flds  ( 0 [,) +oo )
) )  /\  t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )  ->  (
s ( +g  `  (flds  ( 0 [,) +oo ) ) ) t )  =  ( s ( +g  `  ( RR*ss  ( 0 [,) +oo ) ) ) t ) )
225224adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  (
s  e.  ( Base `  (flds  ( 0 [,) +oo )
) )  /\  t  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) ) )  -> 
( s ( +g  `  (flds  ( 0 [,) +oo )
) ) t )  =  ( s ( +g  `  ( RR*ss  ( 0 [,) +oo ) ) ) t ) )
226 funmpt 5926 . . . . . . . . . . . . 13  |-  Fun  (
y  e.  x  |->  ( F `  y ) )
227226a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  Fun  ( y  e.  x  |->  ( F `  y
) ) )
228154, 181syl6eleq 2711 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  ( F `  y )  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )
229228ralrimiva 2966 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  A. y  e.  x  ( F `  y )  e.  (
Base `  (flds  ( 0 [,) +oo ) ) ) )
230155rnmptss 6392 . . . . . . . . . . . . 13  |-  ( A. y  e.  x  ( F `  y )  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  ->  ran  ( y  e.  x  |->  ( F `
 y ) ) 
C_  ( Base `  (flds  ( 0 [,) +oo ) ) ) )
231229, 230syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  ran  ( y  e.  x  |->  ( F `  y
) )  C_  ( Base `  (flds  ( 0 [,) +oo )
) ) )
232173, 174, 175, 188, 197, 225, 227, 231gsumpropd2 17274 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  (
(flds  (
0 [,) +oo )
)  gsumg  ( y  e.  x  |->  ( F `  y
) ) )  =  ( ( RR*ss  (
0 [,) +oo )
)  gsumg  ( y  e.  x  |->  ( F `  y
) ) ) )
233169, 170, 2323eqtrd 2660 . . . . . . . . . 10  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  (fld  gsumg  ( y  e.  x  |->  ( F `  y
) ) )  =  ( ( RR*ss  (
0 [,) +oo )
)  gsumg  ( y  e.  x  |->  ( F `  y
) ) ) )
23431adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  x  e.  Fin )
235152recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  -. +oo  e.  ran  F
)  /\  x  e.  ( ~P X  i^i  Fin ) )  /\  y  e.  x )  ->  ( F `  y )  e.  CC )
236234, 235gsumfsum 19813 . . . . . . . . . 10  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  (fld  gsumg  ( y  e.  x  |->  ( F `  y
) ) )  = 
sum_ y  e.  x  ( F `  y ) )
237233, 236eqtr3d 2658 . . . . . . . . 9  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,) +oo ) )  gsumg  ( y  e.  x  |->  ( F `  y
) ) )  = 
sum_ y  e.  x  ( F `  y ) )
238103, 165, 2373eqtrrd 2661 . . . . . . . 8  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  sum_ y  e.  x  ( F `  y )  =  ( G  gsumg  ( F  |`  x
) ) )
239238mpteq2dva 4744 . . . . . . 7  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  (
x  e.  ( ~P X  i^i  Fin )  |-> 
sum_ y  e.  x  ( F `  y ) )  =  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  x ) ) ) )
240239rneqd 5353 . . . . . 6  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  ran  ( x  e.  ( ~P X  i^i  Fin )  |-> 
sum_ y  e.  x  ( F `  y ) )  =  ran  (
x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x
) ) ) )
241240supeq1d 8352 . . . . 5  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) ,  RR* ,  <  )  =  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  )
)
242100, 241eqtrd 2656 . . . 4  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  (Σ^ `  F
)  =  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  )
)
24395, 242pm2.61dan 832 . . 3  |-  ( ph  ->  (Σ^ `  F )  =  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  )
)
24422, 9, 11, 1xrge0tsms 22637 . . 3  |-  ( ph  ->  ( G tsums  F )  =  { sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  ) } )
245243, 244eleq12d 2695 . 2  |-  ( ph  ->  ( (Σ^ `  F )  e.  ( G tsums  F )  <->  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  )  e.  { sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  ( G  gsumg  ( F  |`  x ) ) ) ,  RR* ,  <  ) } ) )
2468, 245mpbird 247 1  |-  ( ph  ->  (Σ^ `  F )  e.  ( G tsums  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   +ecxad 11944   [,)cico 12177   [,]cicc 12178   sum_csu 14416   Basecbs 15857   ↾s cress 15858   +g cplusg 15941    gsumg cgsu 16101   RR*scxrs 16160   Mndcmnd 17294  SubMndcsubmnd 17334  CMndccmn 18193  SRingcsrg 18505  ℂfldccnfld 19746   tsums ctsu 21929  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-ordt 16161  df-xrs 16162  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-ntr 20824  df-nei 20902  df-cn 21031  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tsms 21930  df-sumge0 40580
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator