Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiblem Structured version   Visualization version   Unicode version

Theorem fiblem 30460
Description: Lemma for fib0 30461, fib1 30462 and fibp1 30463. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Assertion
Ref Expression
fiblem  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= ` 
2 ) ) ) 
|->  ( ( w `  ( ( # `  w
)  -  2 ) )  +  ( w `
 ( ( # `  w )  -  1 ) ) ) ) : (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) ) --> NN0

Proof of Theorem fiblem
StepHypRef Expression
1 s2len 13634 . . . . . . 7  |-  ( # `  <" 0 1 "> )  =  2
21eqcomi 2631 . . . . . 6  |-  2  =  ( # `  <" 0 1 "> )
32fveq2i 6194 . . . . 5  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( # `  <" 0 1 "> ) )
43imaeq2i 5464 . . . 4  |-  ( `' # " ( ZZ>= `  2
) )  =  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) )
54ineq2i 3811 . . 3  |-  (Word  NN0  i^i  ( `' # " ( ZZ>=
`  2 ) ) )  =  (Word  NN0  i^i  ( `' # " ( ZZ>=
`  ( # `  <" 0 1 "> ) ) ) )
6 eqid 2622 . . 3  |-  ( ( w `  ( (
# `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) )  =  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) )
75, 6mpteq12i 4742 . 2  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= ` 
2 ) ) ) 
|->  ( ( w `  ( ( # `  w
)  -  2 ) )  +  ( w `
 ( ( # `  w )  -  1 ) ) ) )  =  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) )
8 elin 3796 . . . . . 6  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  <->  ( w  e. Word  NN0  /\  w  e.  ( `' # " ( ZZ>=
`  ( # `  <" 0 1 "> ) ) ) ) )
98simplbi 476 . . . . 5  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  ->  w  e. Word  NN0 )
10 wrdf 13310 . . . . 5  |-  ( w  e. Word  NN0  ->  w :
( 0..^ ( # `  w ) ) --> NN0 )
119, 10syl 17 . . . 4  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  ->  w : ( 0..^ (
# `  w )
) --> NN0 )
128simprbi 480 . . . . . . . . 9  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  ->  w  e.  ( `' #
" ( ZZ>= `  ( # `
 <" 0 1 "> ) ) ) )
13 hashf 13125 . . . . . . . . . 10  |-  # : _V
--> ( NN0  u.  { +oo } )
14 ffn 6045 . . . . . . . . . 10  |-  ( # : _V --> ( NN0  u.  { +oo } )  ->  #  Fn  _V )
15 elpreima 6337 . . . . . . . . . 10  |-  ( #  Fn  _V  ->  ( w  e.  ( `' # " ( ZZ>=
`  ( # `  <" 0 1 "> ) ) )  <->  ( w  e.  _V  /\  ( # `  w )  e.  (
ZZ>= `  ( # `  <" 0 1 "> ) ) ) ) )
1613, 14, 15mp2b 10 . . . . . . . . 9  |-  ( w  e.  ( `' # " ( ZZ>= `  ( # `  <" 0 1 "> ) ) )  <->  ( w  e.  _V  /\  ( # `  w )  e.  (
ZZ>= `  ( # `  <" 0 1 "> ) ) ) )
1712, 16sylib 208 . . . . . . . 8  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
( w  e.  _V  /\  ( # `  w
)  e.  ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )
1817simprd 479 . . . . . . 7  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
( # `  w )  e.  ( ZZ>= `  ( # `
 <" 0 1 "> ) ) )
1918, 3syl6eleqr 2712 . . . . . 6  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
( # `  w )  e.  ( ZZ>= `  2
) )
20 uznn0sub 11719 . . . . . 6  |-  ( (
# `  w )  e.  ( ZZ>= `  2 )  ->  ( ( # `  w
)  -  2 )  e.  NN0 )
2119, 20syl 17 . . . . 5  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
( ( # `  w
)  -  2 )  e.  NN0 )
22 1zzd 11408 . . . . . . 7  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
1  e.  ZZ )
23 1p1e2 11134 . . . . . . . . 9  |-  ( 1  +  1 )  =  2
2423fveq2i 6194 . . . . . . . 8  |-  ( ZZ>= `  ( 1  +  1 ) )  =  (
ZZ>= `  2 )
2519, 24syl6eleqr 2712 . . . . . . 7  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
( # `  w )  e.  ( ZZ>= `  (
1  +  1 ) ) )
26 peano2uzr 11743 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  ( # `  w )  e.  ( ZZ>= `  (
1  +  1 ) ) )  ->  ( # `
 w )  e.  ( ZZ>= `  1 )
)
2722, 25, 26syl2anc 693 . . . . . 6  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
( # `  w )  e.  ( ZZ>= `  1
) )
28 nnuz 11723 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
2927, 28syl6eleqr 2712 . . . . 5  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
( # `  w )  e.  NN )
3029nnred 11035 . . . . . 6  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
( # `  w )  e.  RR )
31 2rp 11837 . . . . . . 7  |-  2  e.  RR+
3231a1i 11 . . . . . 6  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
2  e.  RR+ )
3330, 32ltsubrpd 11904 . . . . 5  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
( ( # `  w
)  -  2 )  <  ( # `  w
) )
34 elfzo0 12508 . . . . 5  |-  ( ( ( # `  w
)  -  2 )  e.  ( 0..^ (
# `  w )
)  <->  ( ( (
# `  w )  -  2 )  e. 
NN0  /\  ( # `  w
)  e.  NN  /\  ( ( # `  w
)  -  2 )  <  ( # `  w
) ) )
3521, 29, 33, 34syl3anbrc 1246 . . . 4  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
( ( # `  w
)  -  2 )  e.  ( 0..^ (
# `  w )
) )
3611, 35ffvelrnd 6360 . . 3  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
( w `  (
( # `  w )  -  2 ) )  e.  NN0 )
37 fzo0end 12560 . . . . 5  |-  ( (
# `  w )  e.  NN  ->  ( ( # `
 w )  - 
1 )  e.  ( 0..^ ( # `  w
) ) )
3829, 37syl 17 . . . 4  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
( ( # `  w
)  -  1 )  e.  ( 0..^ (
# `  w )
) )
3911, 38ffvelrnd 6360 . . 3  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
( w `  (
( # `  w )  -  1 ) )  e.  NN0 )
4036, 39nn0addcld 11355 . 2  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )  -> 
( ( w `  ( ( # `  w
)  -  2 ) )  +  ( w `
 ( ( # `  w )  -  1 ) ) )  e. 
NN0 )
417, 40fmpti 6383 1  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= ` 
2 ) ) ) 
|->  ( ( w `  ( ( # `  w
)  -  2 ) )  +  ( w `
 ( ( # `  w )  -  1 ) ) ) ) : (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) ) --> NN0
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    e. wcel 1990   _Vcvv 3200    u. cun 3572    i^i cin 3573   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071    < clt 10074    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832  ..^cfzo 12465   #chash 13117  Word cword 13291   <"cs2 13586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593
This theorem is referenced by:  fib0  30461  fib1  30462  fibp1  30463
  Copyright terms: Public domain W3C validator