Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fibp1 Structured version   Visualization version   Unicode version

Theorem fibp1 30463
Description: Value of the Fibonacci sequence at higher indices. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Assertion
Ref Expression
fibp1  |-  ( N  e.  NN  ->  (Fibci `  ( N  +  1 ) )  =  ( (Fibci `  ( N  -  1 ) )  +  (Fibci `  N
) ) )

Proof of Theorem fibp1
Dummy variables  w  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fib 30459 . . . 4  |- Fibci  =  (
<" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) )
21fveq1i 6192 . . 3  |-  (Fibci `  ( N  +  1
) )  =  ( ( <" 0
1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) ) `
 ( N  + 
1 ) )
32a1i 11 . 2  |-  ( N  e.  NN  ->  (Fibci `  ( N  +  1 ) )  =  ( ( <" 0
1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) ) `
 ( N  + 
1 ) ) )
4 nn0ex 11298 . . . 4  |-  NN0  e.  _V
54a1i 11 . . 3  |-  ( N  e.  NN  ->  NN0  e.  _V )
6 0nn0 11307 . . . . 5  |-  0  e.  NN0
76a1i 11 . . . 4  |-  ( N  e.  NN  ->  0  e.  NN0 )
8 1nn0 11308 . . . . 5  |-  1  e.  NN0
98a1i 11 . . . 4  |-  ( N  e.  NN  ->  1  e.  NN0 )
107, 9s2cld 13616 . . 3  |-  ( N  e.  NN  ->  <" 0
1 ">  e. Word  NN0 )
11 eqid 2622 . . 3  |-  (Word  NN0  i^i  ( `' # " ( ZZ>=
`  ( # `  <" 0 1 "> ) ) ) )  =  (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) )
12 fiblem 30460 . . . 4  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= ` 
2 ) ) ) 
|->  ( ( w `  ( ( # `  w
)  -  2 ) )  +  ( w `
 ( ( # `  w )  -  1 ) ) ) ) : (Word  NN0  i^i  ( `' # " ( ZZ>= `  ( # `  <" 0
1 "> )
) ) ) --> NN0
1312a1i 11 . . 3  |-  ( N  e.  NN  ->  (
w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>=
`  2 ) ) )  |->  ( ( w `
 ( ( # `  w )  -  2 ) )  +  ( w `  ( (
# `  w )  -  1 ) ) ) ) : (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  ( # `
 <" 0 1 "> ) ) ) ) --> NN0 )
14 eluzp1p1 11713 . . . . 5  |-  ( N  e.  ( ZZ>= `  1
)  ->  ( N  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
15 nnuz 11723 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
1614, 15eleq2s 2719 . . . 4  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ( ZZ>= `  (
1  +  1 ) ) )
17 s2len 13634 . . . . . 6  |-  ( # `  <" 0 1 "> )  =  2
18 1p1e2 11134 . . . . . 6  |-  ( 1  +  1 )  =  2
1917, 18eqtr4i 2647 . . . . 5  |-  ( # `  <" 0 1 "> )  =  ( 1  +  1 )
2019fveq2i 6194 . . . 4  |-  ( ZZ>= `  ( # `  <" 0
1 "> )
)  =  ( ZZ>= `  ( 1  +  1 ) )
2116, 20syl6eleqr 2712 . . 3  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ( ZZ>= `  ( # `
 <" 0 1 "> ) ) )
225, 10, 11, 13, 21sseqp1 30457 . 2  |-  ( N  e.  NN  ->  (
( <" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) ) `
 ( N  + 
1 ) )  =  ( ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= ` 
2 ) ) ) 
|->  ( ( w `  ( ( # `  w
)  -  2 ) )  +  ( w `
 ( ( # `  w )  -  1 ) ) ) ) `
 ( ( <" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) )  |`  ( 0..^ ( N  +  1 ) ) ) ) )
23 id 22 . . . . . . 7  |-  ( w  =  t  ->  w  =  t )
24 fveq2 6191 . . . . . . . 8  |-  ( w  =  t  ->  ( # `
 w )  =  ( # `  t
) )
2524oveq1d 6665 . . . . . . 7  |-  ( w  =  t  ->  (
( # `  w )  -  2 )  =  ( ( # `  t
)  -  2 ) )
2623, 25fveq12d 6197 . . . . . 6  |-  ( w  =  t  ->  (
w `  ( ( # `
 w )  - 
2 ) )  =  ( t `  (
( # `  t )  -  2 ) ) )
2724oveq1d 6665 . . . . . . 7  |-  ( w  =  t  ->  (
( # `  w )  -  1 )  =  ( ( # `  t
)  -  1 ) )
2823, 27fveq12d 6197 . . . . . 6  |-  ( w  =  t  ->  (
w `  ( ( # `
 w )  - 
1 ) )  =  ( t `  (
( # `  t )  -  1 ) ) )
2926, 28oveq12d 6668 . . . . 5  |-  ( w  =  t  ->  (
( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) )  =  ( ( t `  (
( # `  t )  -  2 ) )  +  ( t `  ( ( # `  t
)  -  1 ) ) ) )
3029cbvmptv 4750 . . . 4  |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= ` 
2 ) ) ) 
|->  ( ( w `  ( ( # `  w
)  -  2 ) )  +  ( w `
 ( ( # `  w )  -  1 ) ) ) )  =  ( t  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= ` 
2 ) ) ) 
|->  ( ( t `  ( ( # `  t
)  -  2 ) )  +  ( t `
 ( ( # `  t )  -  1 ) ) ) )
3130a1i 11 . . 3  |-  ( N  e.  NN  ->  (
w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>=
`  2 ) ) )  |->  ( ( w `
 ( ( # `  w )  -  2 ) )  +  ( w `  ( (
# `  w )  -  1 ) ) ) )  =  ( t  e.  (Word  NN0  i^i  ( `' # " ( ZZ>=
`  2 ) ) )  |->  ( ( t `
 ( ( # `  t )  -  2 ) )  +  ( t `  ( (
# `  t )  -  1 ) ) ) ) )
32 simpr 477 . . . . 5  |-  ( ( N  e.  NN  /\  t  =  ( ( <" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) )  |`  ( 0..^ ( N  +  1 ) ) ) )  ->  t  =  ( ( <" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) )  |`  ( 0..^ ( N  +  1 ) ) ) )
331a1i 11 . . . . . 6  |-  ( ( N  e.  NN  /\  t  =  ( ( <" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) )  |`  ( 0..^ ( N  +  1 ) ) ) )  -> Fibci  =  (
<" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) ) )
3433reseq1d 5395 . . . . 5  |-  ( ( N  e.  NN  /\  t  =  ( ( <" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) )  |`  ( 0..^ ( N  +  1 ) ) ) )  ->  (Fibci  |`  ( 0..^ ( N  +  1 ) ) )  =  ( (
<" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) )  |`  ( 0..^ ( N  +  1 ) ) ) )
3532, 34eqtr4d 2659 . . . 4  |-  ( ( N  e.  NN  /\  t  =  ( ( <" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) )  |`  ( 0..^ ( N  +  1 ) ) ) )  ->  t  =  (Fibci  |`  ( 0..^ ( N  +  1 ) ) ) )
36 simpr 477 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  t  =  (Fibci  |`  ( 0..^ ( N  +  1 ) ) ) )
3736fveq2d 6195 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( # `  t
)  =  ( # `  (Fibci  |`  ( 0..^ ( N  +  1 ) ) ) ) )
385, 10, 11, 13sseqf 30454 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( <" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) ) : NN0 --> NN0 )
391a1i 11 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  -> Fibci  =  (
<" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) ) )
4039feq1d 6030 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (Fibci : NN0 --> NN0  <->  ( <" 0
1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) ) : NN0 --> NN0 )
)
4138, 40mpbird 247 . . . . . . . . . . . 12  |-  ( N  e.  NN  -> Fibci : NN0 --> NN0 )
42 nnnn0 11299 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  NN0 )
4342, 9nn0addcld 11355 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN0 )
445, 41, 43subiwrdlen 30448 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( # `
 (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  =  ( N  +  1 ) )
4544adantr 481 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( # `  (Fibci  |`  ( 0..^ ( N  +  1 ) ) ) )  =  ( N  +  1 ) )
4637, 45eqtrd 2656 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( # `  t
)  =  ( N  +  1 ) )
4746oveq1d 6665 . . . . . . . 8  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( ( # `
 t )  - 
2 )  =  ( ( N  +  1 )  -  2 ) )
48 nncn 11028 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  CC )
49 1cnd 10056 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  1  e.  CC )
50 2cnd 11093 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  2  e.  CC )
5148, 49, 50addsubassd 10412 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  2 )  =  ( N  +  ( 1  -  2 ) ) )
5248, 50, 49subsub2d 10421 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  -  ( 2  -  1 ) )  =  ( N  +  ( 1  -  2 ) ) )
53 2m1e1 11135 . . . . . . . . . . . 12  |-  ( 2  -  1 )  =  1
5453oveq2i 6661 . . . . . . . . . . 11  |-  ( N  -  ( 2  -  1 ) )  =  ( N  -  1 )
5554a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  -  ( 2  -  1 ) )  =  ( N  - 
1 ) )
5651, 52, 553eqtr2d 2662 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  2 )  =  ( N  - 
1 ) )
5756adantr 481 . . . . . . . 8  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( ( N  +  1 )  -  2 )  =  ( N  -  1 ) )
5847, 57eqtrd 2656 . . . . . . 7  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( ( # `
 t )  - 
2 )  =  ( N  -  1 ) )
5958fveq2d 6195 . . . . . 6  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( t `  ( ( # `  t
)  -  2 ) )  =  ( t `
 ( N  - 
1 ) ) )
6036fveq1d 6193 . . . . . 6  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( t `  ( N  -  1 ) )  =  ( (Fibci  |`  ( 0..^ ( N  +  1 ) ) ) `  ( N  -  1 ) ) )
61 nnm1nn0 11334 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
62 peano2nn 11032 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
63 nnre 11027 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  RR )
64 2re 11090 . . . . . . . . . . . . 13  |-  2  e.  RR
6564a1i 11 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  2  e.  RR )
6663, 65readdcld 10069 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  +  2 )  e.  RR )
67 1red 10055 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  1  e.  RR )
68 2rp 11837 . . . . . . . . . . . . 13  |-  2  e.  RR+
6968a1i 11 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  2  e.  RR+ )
7063, 69ltaddrpd 11905 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  <  ( N  +  2 ) )
7163, 66, 67, 70ltsub1dd 10639 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  -  1 )  <  ( ( N  +  2 )  - 
1 ) )
7248, 50, 49addsubassd 10412 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( N  +  2 )  -  1 )  =  ( N  +  ( 2  -  1 ) ) )
7353oveq2i 6661 . . . . . . . . . . 11  |-  ( N  +  ( 2  -  1 ) )  =  ( N  +  1 )
7472, 73syl6eq 2672 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  +  2 )  -  1 )  =  ( N  + 
1 ) )
7571, 74breqtrd 4679 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  <  ( N  + 
1 ) )
76 elfzo0 12508 . . . . . . . . 9  |-  ( ( N  -  1 )  e.  ( 0..^ ( N  +  1 ) )  <->  ( ( N  -  1 )  e. 
NN0  /\  ( N  +  1 )  e.  NN  /\  ( N  -  1 )  < 
( N  +  1 ) ) )
7761, 62, 75, 76syl3anbrc 1246 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ( 0..^ ( N  +  1 ) ) )
7877adantr 481 . . . . . . 7  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( N  -  1 )  e.  ( 0..^ ( N  +  1 ) ) )
79 fvres 6207 . . . . . . 7  |-  ( ( N  -  1 )  e.  ( 0..^ ( N  +  1 ) )  ->  ( (Fibci  |`  ( 0..^ ( N  +  1 ) ) ) `  ( N  -  1 ) )  =  (Fibci `  ( N  -  1 ) ) )
8078, 79syl 17 . . . . . 6  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( (Fibci  |`  ( 0..^ ( N  +  1 ) ) ) `  ( N  -  1 ) )  =  (Fibci `  ( N  -  1 ) ) )
8159, 60, 803eqtrd 2660 . . . . 5  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( t `  ( ( # `  t
)  -  2 ) )  =  (Fibci `  ( N  -  1
) ) )
8246oveq1d 6665 . . . . . . . 8  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( ( # `
 t )  - 
1 )  =  ( ( N  +  1 )  -  1 ) )
83 simpl 473 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  N  e.  NN )
8483nncnd 11036 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  N  e.  CC )
85 1cnd 10056 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  1  e.  CC )
8684, 85pncand 10393 . . . . . . . 8  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( ( N  +  1 )  -  1 )  =  N )
8782, 86eqtrd 2656 . . . . . . 7  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( ( # `
 t )  - 
1 )  =  N )
8887fveq2d 6195 . . . . . 6  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( t `  ( ( # `  t
)  -  1 ) )  =  ( t `
 N ) )
8936fveq1d 6193 . . . . . 6  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( t `  N )  =  ( (Fibci  |`  ( 0..^ ( N  +  1 ) ) ) `  N
) )
90 nn0fz0 12437 . . . . . . . . . 10  |-  ( N  e.  NN0  <->  N  e.  (
0 ... N ) )
9142, 90sylib 208 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ( 0 ... N
) )
92 nnz 11399 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ZZ )
93 fzval3 12536 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
0 ... N )  =  ( 0..^ ( N  +  1 ) ) )
9492, 93syl 17 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
0 ... N )  =  ( 0..^ ( N  +  1 ) ) )
9591, 94eleqtrd 2703 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  ( 0..^ ( N  +  1 ) ) )
9695adantr 481 . . . . . . 7  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  N  e.  ( 0..^ ( N  + 
1 ) ) )
97 fvres 6207 . . . . . . 7  |-  ( N  e.  ( 0..^ ( N  +  1 ) )  ->  ( (Fibci  |`  ( 0..^ ( N  +  1 ) ) ) `  N )  =  (Fibci `  N
) )
9896, 97syl 17 . . . . . 6  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( (Fibci  |`  ( 0..^ ( N  +  1 ) ) ) `  N )  =  (Fibci `  N
) )
9988, 89, 983eqtrd 2660 . . . . 5  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( t `  ( ( # `  t
)  -  1 ) )  =  (Fibci `  N ) )
10081, 99oveq12d 6668 . . . 4  |-  ( ( N  e.  NN  /\  t  =  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  ->  ( (
t `  ( ( # `
 t )  - 
2 ) )  +  ( t `  (
( # `  t )  -  1 ) ) )  =  ( (Fibci `  ( N  -  1 ) )  +  (Fibci `  N ) ) )
10135, 100syldan 487 . . 3  |-  ( ( N  e.  NN  /\  t  =  ( ( <" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) )  |`  ( 0..^ ( N  +  1 ) ) ) )  ->  (
( t `  (
( # `  t )  -  2 ) )  +  ( t `  ( ( # `  t
)  -  1 ) ) )  =  ( (Fibci `  ( N  -  1 ) )  +  (Fibci `  N
) ) )
10239reseq1d 5395 . . . 4  |-  ( N  e.  NN  ->  (Fibci  |`  ( 0..^ ( N  +  1 ) ) )  =  ( (
<" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) )  |`  ( 0..^ ( N  +  1 ) ) ) )
1035, 41, 43subiwrd 30447 . . . . 5  |-  ( N  e.  NN  ->  (Fibci  |`  ( 0..^ ( N  +  1 ) ) )  e. Word  NN0 )
104 ovex 6678 . . . . . . . . 9  |-  ( <" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) )  e.  _V
1051, 104eqeltri 2697 . . . . . . . 8  |- Fibci  e.  _V
106105resex 5443 . . . . . . 7  |-  (Fibci  |`  (
0..^ ( N  + 
1 ) ) )  e.  _V
107106a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  (Fibci  |`  ( 0..^ ( N  +  1 ) ) )  e.  _V )
10818fveq2i 6194 . . . . . . . 8  |-  ( ZZ>= `  ( 1  +  1 ) )  =  (
ZZ>= `  2 )
10916, 108syl6eleq 2711 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ( ZZ>= `  2
) )
11044, 109eqeltrd 2701 . . . . . 6  |-  ( N  e.  NN  ->  ( # `
 (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  e.  ( ZZ>= ` 
2 ) )
111 hashf 13125 . . . . . . 7  |-  # : _V
--> ( NN0  u.  { +oo } )
112 ffn 6045 . . . . . . 7  |-  ( # : _V --> ( NN0  u.  { +oo } )  ->  #  Fn  _V )
113 elpreima 6337 . . . . . . 7  |-  ( #  Fn  _V  ->  ( (Fibci  |`  ( 0..^ ( N  +  1 ) ) )  e.  ( `' # " ( ZZ>= `  2
) )  <->  ( (Fibci  |`  ( 0..^ ( N  +  1 ) ) )  e.  _V  /\  ( # `  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  e.  ( ZZ>= ` 
2 ) ) ) )
114111, 112, 113mp2b 10 . . . . . 6  |-  ( (Fibci  |`  ( 0..^ ( N  +  1 ) ) )  e.  ( `' # " ( ZZ>= `  2
) )  <->  ( (Fibci  |`  ( 0..^ ( N  +  1 ) ) )  e.  _V  /\  ( # `  (Fibci  |`  (
0..^ ( N  + 
1 ) ) ) )  e.  ( ZZ>= ` 
2 ) ) )
115107, 110, 114sylanbrc 698 . . . . 5  |-  ( N  e.  NN  ->  (Fibci  |`  ( 0..^ ( N  +  1 ) ) )  e.  ( `' # " ( ZZ>= `  2
) ) )
116103, 115elind 3798 . . . 4  |-  ( N  e.  NN  ->  (Fibci  |`  ( 0..^ ( N  +  1 ) ) )  e.  (Word  NN0  i^i  ( `' # " ( ZZ>=
`  2 ) ) ) )
117102, 116eqeltrrd 2702 . . 3  |-  ( N  e.  NN  ->  (
( <" 0 1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) )  |`  ( 0..^ ( N  +  1 ) ) )  e.  (Word  NN0  i^i  ( `' # " ( ZZ>=
`  2 ) ) ) )
118 ovex 6678 . . . 4  |-  ( (Fibci `  ( N  -  1 ) )  +  (Fibci `  N ) )  e. 
_V
119118a1i 11 . . 3  |-  ( N  e.  NN  ->  (
(Fibci `  ( N  -  1 ) )  +  (Fibci `  N
) )  e.  _V )
12031, 101, 117, 119fvmptd 6288 . 2  |-  ( N  e.  NN  ->  (
( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) `  ( ( <" 0
1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) )  |`  ( 0..^ ( N  +  1 ) ) ) )  =  ( (Fibci `  ( N  -  1 ) )  +  (Fibci `  N
) ) )
1213, 22, 1203eqtrd 2660 1  |-  ( N  e.  NN  ->  (Fibci `  ( N  +  1 ) )  =  ( (Fibci `  ( N  -  1 ) )  +  (Fibci `  N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    i^i cin 3573   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113    |` cres 5116   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071    < clt 10074    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   <"cs2 13586  seqstrcsseq 30445  Fibcicfib 30458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-s2 13593  df-sseq 30446  df-fib 30459
This theorem is referenced by:  fib2  30464  fib3  30465  fib4  30466  fib5  30467  fib6  30468
  Copyright terms: Public domain W3C validator