MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcvg Structured version   Visualization version   Unicode version

Theorem fsumcvg 14443
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
summo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
summo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
sumrb.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumcvg.4  |-  ( ph  ->  A  C_  ( M ... N ) )
Assertion
Ref Expression
fsumcvg  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    k, M
Allowed substitution hint:    B( k)

Proof of Theorem fsumcvg
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2  |-  ( ZZ>= `  N )  =  (
ZZ>= `  N )
2 sumrb.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
3 eluzelz 11697 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
42, 3syl 17 . 2  |-  ( ph  ->  N  e.  ZZ )
5 seqex 12803 . . 3  |-  seq M
(  +  ,  F
)  e.  _V
65a1i 11 . 2  |-  ( ph  ->  seq M (  +  ,  F )  e. 
_V )
7 eqid 2622 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
8 eluzel2 11692 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
92, 8syl 17 . . . 4  |-  ( ph  ->  M  e.  ZZ )
10 eluzelz 11697 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
11 iftrue 4092 . . . . . . . . . 10  |-  ( k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  B )
1211adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  =  B )
13 summo.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1412, 13eqeltrd 2701 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
1514ex 450 . . . . . . 7  |-  ( ph  ->  ( k  e.  A  ->  if ( k  e.  A ,  B , 
0 )  e.  CC ) )
16 iffalse 4095 . . . . . . . 8  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  0 )
17 0cn 10032 . . . . . . . 8  |-  0  e.  CC
1816, 17syl6eqel 2709 . . . . . . 7  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
1915, 18pm2.61d1 171 . . . . . 6  |-  ( ph  ->  if ( k  e.  A ,  B , 
0 )  e.  CC )
20 summo.1 . . . . . . 7  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
2120fvmpt2 6291 . . . . . 6  |-  ( ( k  e.  ZZ  /\  if ( k  e.  A ,  B ,  0 )  e.  CC )  -> 
( F `  k
)  =  if ( k  e.  A ,  B ,  0 ) )
2210, 19, 21syl2anr 495 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
2319adantr 481 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  A ,  B ,  0 )  e.  CC )
2422, 23eqeltrd 2701 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
257, 9, 24serf 12829 . . 3  |-  ( ph  ->  seq M (  +  ,  F ) : ( ZZ>= `  M ) --> CC )
2625, 2ffvelrnd 6360 . 2  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  e.  CC )
27 addid1 10216 . . . . 5  |-  ( m  e.  CC  ->  (
m  +  0 )  =  m )
2827adantl 482 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  CC )  ->  ( m  +  0 )  =  m )
292adantr 481 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  N  e.  ( ZZ>= `  M )
)
30 simpr 477 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  n  e.  ( ZZ>= `  N )
)
3126adantr 481 . . . 4  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  (  seq M (  +  ,  F ) `  N
)  e.  CC )
32 elfzuz 12338 . . . . . 6  |-  ( m  e.  ( ( N  +  1 ) ... n )  ->  m  e.  ( ZZ>= `  ( N  +  1 ) ) )
33 eluzelz 11697 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  ( N  +  1 ) )  ->  m  e.  ZZ )
3433adantl 482 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  m  e.  ZZ )
35 fsumcvg.4 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  ( M ... N ) )
3635sseld 3602 . . . . . . . . . . 11  |-  ( ph  ->  ( m  e.  A  ->  m  e.  ( M ... N ) ) )
37 fznuz 12422 . . . . . . . . . . 11  |-  ( m  e.  ( M ... N )  ->  -.  m  e.  ( ZZ>= `  ( N  +  1
) ) )
3836, 37syl6 35 . . . . . . . . . 10  |-  ( ph  ->  ( m  e.  A  ->  -.  m  e.  (
ZZ>= `  ( N  + 
1 ) ) ) )
3938con2d 129 . . . . . . . . 9  |-  ( ph  ->  ( m  e.  (
ZZ>= `  ( N  + 
1 ) )  ->  -.  m  e.  A
) )
4039imp 445 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  m  e.  A )
4134, 40eldifd 3585 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  m  e.  ( ZZ  \  A ) )
42 fveq2 6191 . . . . . . . . 9  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
4342eqeq1d 2624 . . . . . . . 8  |-  ( k  =  m  ->  (
( F `  k
)  =  0  <->  ( F `  m )  =  0 ) )
44 eldifi 3732 . . . . . . . . . 10  |-  ( k  e.  ( ZZ  \  A )  ->  k  e.  ZZ )
45 eldifn 3733 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ  \  A )  ->  -.  k  e.  A )
4645, 16syl 17 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ  \  A )  ->  if ( k  e.  A ,  B ,  0 )  =  0 )
4746, 17syl6eqel 2709 . . . . . . . . . 10  |-  ( k  e.  ( ZZ  \  A )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
4844, 47, 21syl2anc 693 . . . . . . . . 9  |-  ( k  e.  ( ZZ  \  A )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
4948, 46eqtrd 2656 . . . . . . . 8  |-  ( k  e.  ( ZZ  \  A )  ->  ( F `  k )  =  0 )
5043, 49vtoclga 3272 . . . . . . 7  |-  ( m  e.  ( ZZ  \  A )  ->  ( F `  m )  =  0 )
5141, 50syl 17 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  m )  =  0 )
5232, 51sylan2 491 . . . . 5  |-  ( (
ph  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( F `  m )  =  0 )
5352adantlr 751 . . . 4  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  N )
)  /\  m  e.  ( ( N  + 
1 ) ... n
) )  ->  ( F `  m )  =  0 )
5428, 29, 30, 31, 53seqid2 12847 . . 3  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  (  seq M (  +  ,  F ) `  N
)  =  (  seq M (  +  ,  F ) `  n
) )
5554eqcomd 2628 . 2  |-  ( (
ph  /\  n  e.  ( ZZ>= `  N )
)  ->  (  seq M (  +  ,  F ) `  n
)  =  (  seq M (  +  ,  F ) `  N
) )
561, 4, 6, 26, 55climconst 14274 1  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  summolem2a  14446  fsumcvg2  14458
  Copyright terms: Public domain W3C validator