MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptnn0fzfv Structured version   Visualization version   Unicode version

Theorem gsummptnn0fzfv 18384
Description: A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.)
Hypotheses
Ref Expression
gsummptnn0fzfv.b  |-  B  =  ( Base `  G
)
gsummptnn0fzfv.0  |-  .0.  =  ( 0g `  G )
gsummptnn0fzfv.g  |-  ( ph  ->  G  e. CMnd )
gsummptnn0fzfv.f  |-  ( ph  ->  F  e.  ( B  ^m  NN0 ) )
gsummptnn0fzfv.s  |-  ( ph  ->  S  e.  NN0 )
gsummptnn0fzfv.u  |-  ( ph  ->  A. x  e.  NN0  ( S  <  x  -> 
( F `  x
)  =  .0.  )
)
Assertion
Ref Expression
gsummptnn0fzfv  |-  ( ph  ->  ( G  gsumg  ( k  e.  NN0  |->  ( F `  k ) ) )  =  ( G  gsumg  ( k  e.  ( 0 ... S ) 
|->  ( F `  k
) ) ) )
Distinct variable groups:    B, k    k, F, x    S, k, x    .0. , k, x    ph, k, x
Allowed substitution hints:    B( x)    G( x, k)

Proof of Theorem gsummptnn0fzfv
StepHypRef Expression
1 gsummptnn0fzfv.b . 2  |-  B  =  ( Base `  G
)
2 gsummptnn0fzfv.0 . 2  |-  .0.  =  ( 0g `  G )
3 gsummptnn0fzfv.g . 2  |-  ( ph  ->  G  e. CMnd )
4 gsummptnn0fzfv.f . . . 4  |-  ( ph  ->  F  e.  ( B  ^m  NN0 ) )
5 elmapi 7879 . . . 4  |-  ( F  e.  ( B  ^m  NN0 )  ->  F : NN0
--> B )
6 ffvelrn 6357 . . . . 5  |-  ( ( F : NN0 --> B  /\  k  e.  NN0 )  -> 
( F `  k
)  e.  B )
76ex 450 . . . 4  |-  ( F : NN0 --> B  -> 
( k  e.  NN0  ->  ( F `  k
)  e.  B ) )
84, 5, 73syl 18 . . 3  |-  ( ph  ->  ( k  e.  NN0  ->  ( F `  k
)  e.  B ) )
98ralrimiv 2965 . 2  |-  ( ph  ->  A. k  e.  NN0  ( F `  k )  e.  B )
10 gsummptnn0fzfv.s . 2  |-  ( ph  ->  S  e.  NN0 )
11 gsummptnn0fzfv.u . . 3  |-  ( ph  ->  A. x  e.  NN0  ( S  <  x  -> 
( F `  x
)  =  .0.  )
)
12 breq2 4657 . . . . 5  |-  ( x  =  k  ->  ( S  <  x  <->  S  <  k ) )
13 fveq2 6191 . . . . . 6  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
1413eqeq1d 2624 . . . . 5  |-  ( x  =  k  ->  (
( F `  x
)  =  .0.  <->  ( F `  k )  =  .0.  ) )
1512, 14imbi12d 334 . . . 4  |-  ( x  =  k  ->  (
( S  <  x  ->  ( F `  x
)  =  .0.  )  <->  ( S  <  k  -> 
( F `  k
)  =  .0.  )
) )
1615cbvralv 3171 . . 3  |-  ( A. x  e.  NN0  ( S  <  x  ->  ( F `  x )  =  .0.  )  <->  A. k  e.  NN0  ( S  < 
k  ->  ( F `  k )  =  .0.  ) )
1711, 16sylib 208 . 2  |-  ( ph  ->  A. k  e.  NN0  ( S  <  k  -> 
( F `  k
)  =  .0.  )
)
181, 2, 3, 9, 10, 17gsummptnn0fzv 18383 1  |-  ( ph  ->  ( G  gsumg  ( k  e.  NN0  |->  ( F `  k ) ) )  =  ( G  gsumg  ( k  e.  ( 0 ... S ) 
|->  ( F `  k
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936    < clt 10074   NN0cn0 11292   ...cfz 12326   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cntz 17750  df-cmn 18195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator