MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumply1subr Structured version   Visualization version   Unicode version

Theorem gsumply1subr 19604
Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019.) (Proof shortened by AV, 31-Jan-2020.)
Hypotheses
Ref Expression
subrgply1.s  |-  S  =  (Poly1 `  R )
subrgply1.h  |-  H  =  ( Rs  T )
subrgply1.u  |-  U  =  (Poly1 `  H )
subrgply1.b  |-  B  =  ( Base `  U
)
gsumply1subr.s  |-  ( ph  ->  T  e.  (SubRing `  R
) )
gsumply1subr.a  |-  ( ph  ->  A  e.  V )
gsumply1subr.f  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
gsumply1subr  |-  ( ph  ->  ( S  gsumg  F )  =  ( U  gsumg  F ) )

Proof of Theorem gsumply1subr
Dummy variables  s 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumply1subr.a . . 3  |-  ( ph  ->  A  e.  V )
2 gsumply1subr.s . . . 4  |-  ( ph  ->  T  e.  (SubRing `  R
) )
3 subrgply1.s . . . . 5  |-  S  =  (Poly1 `  R )
4 subrgply1.h . . . . 5  |-  H  =  ( Rs  T )
5 subrgply1.u . . . . 5  |-  U  =  (Poly1 `  H )
6 subrgply1.b . . . . 5  |-  B  =  ( Base `  U
)
73, 4, 5, 6subrgply1 19603 . . . 4  |-  ( T  e.  (SubRing `  R
)  ->  B  e.  (SubRing `  S ) )
8 subrgsubg 18786 . . . . 5  |-  ( B  e.  (SubRing `  S
)  ->  B  e.  (SubGrp `  S ) )
9 subgsubm 17616 . . . . 5  |-  ( B  e.  (SubGrp `  S
)  ->  B  e.  (SubMnd `  S ) )
108, 9syl 17 . . . 4  |-  ( B  e.  (SubRing `  S
)  ->  B  e.  (SubMnd `  S ) )
112, 7, 103syl 18 . . 3  |-  ( ph  ->  B  e.  (SubMnd `  S ) )
12 gsumply1subr.f . . 3  |-  ( ph  ->  F : A --> B )
13 eqid 2622 . . 3  |-  ( Ss  B )  =  ( Ss  B )
141, 11, 12, 13gsumsubm 17373 . 2  |-  ( ph  ->  ( S  gsumg  F )  =  ( ( Ss  B )  gsumg  F ) )
15 fex 6490 . . . 4  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
1612, 1, 15syl2anc 693 . . 3  |-  ( ph  ->  F  e.  _V )
17 ovexd 6680 . . 3  |-  ( ph  ->  ( Ss  B )  e.  _V )
18 fvex 6201 . . . . 5  |-  (Poly1 `  H
)  e.  _V
195, 18eqeltri 2697 . . . 4  |-  U  e. 
_V
2019a1i 11 . . 3  |-  ( ph  ->  U  e.  _V )
21 eqid 2622 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
226oveq2i 6661 . . . . 5  |-  ( Ss  B )  =  ( Ss  (
Base `  U )
)
233, 4, 5, 21, 2, 22ressply1bas 19599 . . . 4  |-  ( ph  ->  ( Base `  U
)  =  ( Base `  ( Ss  B ) ) )
2423eqcomd 2628 . . 3  |-  ( ph  ->  ( Base `  ( Ss  B ) )  =  ( Base `  U
) )
2513subrgring 18783 . . . . 5  |-  ( B  e.  (SubRing `  S
)  ->  ( Ss  B
)  e.  Ring )
267, 25syl 17 . . . 4  |-  ( T  e.  (SubRing `  R
)  ->  ( Ss  B
)  e.  Ring )
27 ringmgm 18557 . . . 4  |-  ( ( Ss  B )  e.  Ring  -> 
( Ss  B )  e. Mgm )
282, 26, 273syl 18 . . 3  |-  ( ph  ->  ( Ss  B )  e. Mgm )
29 simpl 473 . . . . 5  |-  ( (
ph  /\  ( s  e.  ( Base `  ( Ss  B ) )  /\  t  e.  ( Base `  ( Ss  B ) ) ) )  ->  ph )
303, 4, 5, 6, 2, 13ressply1bas 19599 . . . . . . . . . 10  |-  ( ph  ->  B  =  ( Base `  ( Ss  B ) ) )
3130eqcomd 2628 . . . . . . . . 9  |-  ( ph  ->  ( Base `  ( Ss  B ) )  =  B )
3231eleq2d 2687 . . . . . . . 8  |-  ( ph  ->  ( s  e.  (
Base `  ( Ss  B
) )  <->  s  e.  B ) )
3332biimpcd 239 . . . . . . 7  |-  ( s  e.  ( Base `  ( Ss  B ) )  -> 
( ph  ->  s  e.  B ) )
3433adantr 481 . . . . . 6  |-  ( ( s  e.  ( Base `  ( Ss  B ) )  /\  t  e.  ( Base `  ( Ss  B ) ) )  ->  ( ph  ->  s  e.  B ) )
3534impcom 446 . . . . 5  |-  ( (
ph  /\  ( s  e.  ( Base `  ( Ss  B ) )  /\  t  e.  ( Base `  ( Ss  B ) ) ) )  ->  s  e.  B )
3631eleq2d 2687 . . . . . . . 8  |-  ( ph  ->  ( t  e.  (
Base `  ( Ss  B
) )  <->  t  e.  B ) )
3736biimpcd 239 . . . . . . 7  |-  ( t  e.  ( Base `  ( Ss  B ) )  -> 
( ph  ->  t  e.  B ) )
3837adantl 482 . . . . . 6  |-  ( ( s  e.  ( Base `  ( Ss  B ) )  /\  t  e.  ( Base `  ( Ss  B ) ) )  ->  ( ph  ->  t  e.  B ) )
3938impcom 446 . . . . 5  |-  ( (
ph  /\  ( s  e.  ( Base `  ( Ss  B ) )  /\  t  e.  ( Base `  ( Ss  B ) ) ) )  ->  t  e.  B )
403, 4, 5, 6, 2, 13ressply1add 19600 . . . . 5  |-  ( (
ph  /\  ( s  e.  B  /\  t  e.  B ) )  -> 
( s ( +g  `  U ) t )  =  ( s ( +g  `  ( Ss  B ) ) t ) )
4129, 35, 39, 40syl12anc 1324 . . . 4  |-  ( (
ph  /\  ( s  e.  ( Base `  ( Ss  B ) )  /\  t  e.  ( Base `  ( Ss  B ) ) ) )  ->  ( s
( +g  `  U ) t )  =  ( s ( +g  `  ( Ss  B ) ) t ) )
4241eqcomd 2628 . . 3  |-  ( (
ph  /\  ( s  e.  ( Base `  ( Ss  B ) )  /\  t  e.  ( Base `  ( Ss  B ) ) ) )  ->  ( s
( +g  `  ( Ss  B ) ) t )  =  ( s ( +g  `  U ) t ) )
43 ffun 6048 . . . 4  |-  ( F : A --> B  ->  Fun  F )
4412, 43syl 17 . . 3  |-  ( ph  ->  Fun  F )
45 frn 6053 . . . . 5  |-  ( F : A --> B  ->  ran  F  C_  B )
4612, 45syl 17 . . . 4  |-  ( ph  ->  ran  F  C_  B
)
4746, 30sseqtrd 3641 . . 3  |-  ( ph  ->  ran  F  C_  ( Base `  ( Ss  B ) ) )
4816, 17, 20, 24, 28, 42, 44, 47gsummgmpropd 17275 . 2  |-  ( ph  ->  ( ( Ss  B ) 
gsumg  F )  =  ( U  gsumg  F ) )
4914, 48eqtrd 2656 1  |-  ( ph  ->  ( S  gsumg  F )  =  ( U  gsumg  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ran crn 5115   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   +g cplusg 15941    gsumg cgsu 16101  Mgmcmgm 17240  SubMndcsubmnd 17334  SubGrpcsubg 17588   Ringcrg 18547  SubRingcsubrg 18776  Poly1cpl1 19547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-psr 19356  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-ply1 19552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator