MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwsubmcl Structured version   Visualization version   Unicode version

Theorem gsumwsubmcl 17375
Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
gsumwsubmcl  |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( G  gsumg  W )  e.  S
)

Proof of Theorem gsumwsubmcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . 4  |-  ( W  =  (/)  ->  ( G 
gsumg  W )  =  ( G  gsumg  (/) ) )
2 eqid 2622 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
32gsum0 17278 . . . 4  |-  ( G 
gsumg  (/) )  =  ( 0g
`  G )
41, 3syl6eq 2672 . . 3  |-  ( W  =  (/)  ->  ( G 
gsumg  W )  =  ( 0g `  G ) )
54eleq1d 2686 . 2  |-  ( W  =  (/)  ->  ( ( G  gsumg  W )  e.  S  <->  ( 0g `  G )  e.  S ) )
6 eqid 2622 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
7 eqid 2622 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
8 submrcl 17346 . . . . 5  |-  ( S  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
98ad2antrr 762 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  G  e.  Mnd )
10 lennncl 13325 . . . . . . 7  |-  ( ( W  e. Word  S  /\  W  =/=  (/) )  ->  ( # `
 W )  e.  NN )
1110adantll 750 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( # `
 W )  e.  NN )
12 nnm1nn0 11334 . . . . . 6  |-  ( (
# `  W )  e.  NN  ->  ( ( # `
 W )  - 
1 )  e.  NN0 )
1311, 12syl 17 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (
( # `  W )  -  1 )  e. 
NN0 )
14 nn0uz 11722 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
1513, 14syl6eleq 2711 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (
( # `  W )  -  1 )  e.  ( ZZ>= `  0 )
)
16 wrdf 13310 . . . . . . 7  |-  ( W  e. Word  S  ->  W : ( 0..^ (
# `  W )
) --> S )
1716ad2antlr 763 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  W : ( 0..^ (
# `  W )
) --> S )
1811nnzd 11481 . . . . . . . 8  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( # `
 W )  e.  ZZ )
19 fzoval 12471 . . . . . . . 8  |-  ( (
# `  W )  e.  ZZ  ->  ( 0..^ ( # `  W
) )  =  ( 0 ... ( (
# `  W )  -  1 ) ) )
2018, 19syl 17 . . . . . . 7  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (
0..^ ( # `  W
) )  =  ( 0 ... ( (
# `  W )  -  1 ) ) )
2120feq2d 6031 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( W : ( 0..^ (
# `  W )
) --> S  <->  W :
( 0 ... (
( # `  W )  -  1 ) ) --> S ) )
2217, 21mpbid 222 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( # `  W
)  -  1 ) ) --> S )
236submss 17350 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
2423ad2antrr 762 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  S  C_  ( Base `  G
) )
2522, 24fssd 6057 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( # `  W
)  -  1 ) ) --> ( Base `  G
) )
266, 7, 9, 15, 25gsumval2 17280 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( G  gsumg  W )  =  (  seq 0 ( ( +g  `  G ) ,  W ) `  ( ( # `  W
)  -  1 ) ) )
2722ffvelrnda 6359 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... ( ( # `  W )  -  1 ) ) )  -> 
( W `  x
)  e.  S )
28 simpll 790 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  S  e.  (SubMnd `  G )
)
297submcl 17353 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x ( +g  `  G
) y )  e.  S )
30293expb 1266 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x
( +g  `  G ) y )  e.  S
)
3128, 30sylan 488 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
x ( +g  `  G
) y )  e.  S )
3215, 27, 31seqcl 12821 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (  seq 0 ( ( +g  `  G ) ,  W
) `  ( ( # `
 W )  - 
1 ) )  e.  S )
3326, 32eqeltrd 2701 . 2  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( G  gsumg  W )  e.  S
)
342subm0cl 17352 . . 3  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  S
)
3534adantr 481 . 2  |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( 0g `  G )  e.  S )
365, 33, 35pm2.61ne 2879 1  |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( G  gsumg  W )  e.  S
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465    seqcseq 12801   #chash 13117  Word cword 13291   Basecbs 15857   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294  SubMndcsubmnd 17334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336
This theorem is referenced by:  gsumwcl  17377  gsumwspan  17383  frmdss2  17400  psgnunilem5  17914
  Copyright terms: Public domain W3C validator