Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2lem1 Structured version   Visualization version   Unicode version

Theorem imo72b2lem1 38471
Description: Lemma for imo72b2 38475. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2lem1.1  |-  ( ph  ->  F : RR --> RR )
imo72b2lem1.7  |-  ( ph  ->  E. x  e.  RR  ( F `  x )  =/=  0 )
imo72b2lem1.6  |-  ( ph  ->  A. y  e.  RR  ( abs `  ( F `
 y ) )  <_  1 )
Assertion
Ref Expression
imo72b2lem1  |-  ( ph  ->  0  <  sup (
( abs " ( F " RR ) ) ,  RR ,  <  ) )
Distinct variable groups:    x, F    y, F    ph, x    ph, y

Proof of Theorem imo72b2lem1
Dummy variables  c 
t  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaco 5640 . . . 4  |-  ( ( abs  o.  F )
" RR )  =  ( abs " ( F " RR ) )
21eqcomi 2631 . . 3  |-  ( abs " ( F " RR ) )  =  ( ( abs  o.  F
) " RR )
3 imassrn 5477 . . . . 5  |-  ( ( abs  o.  F )
" RR )  C_  ran  ( abs  o.  F
)
43a1i 11 . . . 4  |-  ( ph  ->  ( ( abs  o.  F ) " RR )  C_  ran  ( abs 
o.  F ) )
5 imo72b2lem1.1 . . . . . 6  |-  ( ph  ->  F : RR --> RR )
6 absf 14077 . . . . . . . 8  |-  abs : CC
--> RR
76a1i 11 . . . . . . 7  |-  ( ph  ->  abs : CC --> RR )
8 ax-resscn 9993 . . . . . . . 8  |-  RR  C_  CC
98a1i 11 . . . . . . 7  |-  ( ph  ->  RR  C_  CC )
107, 9fssresd 6071 . . . . . 6  |-  ( ph  ->  ( abs  |`  RR ) : RR --> RR )
115, 10fco2d 38461 . . . . 5  |-  ( ph  ->  ( abs  o.  F
) : RR --> RR )
12 frn 6053 . . . . 5  |-  ( ( abs  o.  F ) : RR --> RR  ->  ran  ( abs  o.  F
)  C_  RR )
1311, 12syl 17 . . . 4  |-  ( ph  ->  ran  ( abs  o.  F )  C_  RR )
144, 13sstrd 3613 . . 3  |-  ( ph  ->  ( ( abs  o.  F ) " RR )  C_  RR )
152, 14syl5eqss 3649 . 2  |-  ( ph  ->  ( abs " ( F " RR ) ) 
C_  RR )
16 0re 10040 . . . . . . . 8  |-  0  e.  RR
1716ne0ii 3923 . . . . . . 7  |-  RR  =/=  (/)
1817a1i 11 . . . . . 6  |-  ( ph  ->  RR  =/=  (/) )
1918, 11wnefimgd 38460 . . . . 5  |-  ( ph  ->  ( ( abs  o.  F ) " RR )  =/=  (/) )
2019necomd 2849 . . . 4  |-  ( ph  -> 
(/)  =/=  ( ( abs  o.  F ) " RR ) )
212a1i 11 . . . 4  |-  ( ph  ->  ( abs " ( F " RR ) )  =  ( ( abs 
o.  F ) " RR ) )
2220, 21neeqtrrd 2868 . . 3  |-  ( ph  -> 
(/)  =/=  ( abs " ( F " RR ) ) )
2322necomd 2849 . 2  |-  ( ph  ->  ( abs " ( F " RR ) )  =/=  (/) )
24 1red 10055 . . 3  |-  ( ph  ->  1  e.  RR )
25 simpr 477 . . . . 5  |-  ( (
ph  /\  c  = 
1 )  ->  c  =  1 )
2625breq2d 4665 . . . 4  |-  ( (
ph  /\  c  = 
1 )  ->  (
t  <_  c  <->  t  <_  1 ) )
2726ralbidv 2986 . . 3  |-  ( (
ph  /\  c  = 
1 )  ->  ( A. t  e.  ( abs " ( F " RR ) ) t  <_ 
c  <->  A. t  e.  ( abs " ( F
" RR ) ) t  <_  1 ) )
28 imo72b2lem1.6 . . . 4  |-  ( ph  ->  A. y  e.  RR  ( abs `  ( F `
 y ) )  <_  1 )
295, 28extoimad 38464 . . 3  |-  ( ph  ->  A. t  e.  ( abs " ( F
" RR ) ) t  <_  1 )
3024, 27, 29rspcedvd 3317 . 2  |-  ( ph  ->  E. c  e.  RR  A. t  e.  ( abs " ( F " RR ) ) t  <_ 
c )
31 0red 10041 . 2  |-  ( ph  ->  0  e.  RR )
32 imo72b2lem1.7 . . 3  |-  ( ph  ->  E. x  e.  RR  ( F `  x )  =/=  0 )
335adantr 481 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( F `
 x )  =/=  0 ) )  ->  F : RR --> RR )
34 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( F `
 x )  =/=  0 ) )  ->  x  e.  RR )
3533, 34fvco3d 38462 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( F `
 x )  =/=  0 ) )  -> 
( ( abs  o.  F ) `  x
)  =  ( abs `  ( F `  x
) ) )
3611funfvima2d 38469 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( abs  o.  F ) `
 x )  e.  ( ( abs  o.  F ) " RR ) )
3736adantrr 753 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( F `
 x )  =/=  0 ) )  -> 
( ( abs  o.  F ) `  x
)  e.  ( ( abs  o.  F )
" RR ) )
3837, 1syl6eleq 2711 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( F `
 x )  =/=  0 ) )  -> 
( ( abs  o.  F ) `  x
)  e.  ( abs " ( F " RR ) ) )
3935, 38eqeltrrd 2702 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( F `
 x )  =/=  0 ) )  -> 
( abs `  ( F `  x )
)  e.  ( abs " ( F " RR ) ) )
40 simpr 477 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( F `  x )  =/=  0 ) )  /\  z  =  ( abs `  ( F `
 x ) ) )  ->  z  =  ( abs `  ( F `
 x ) ) )
4140breq2d 4665 . . . 4  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( F `  x )  =/=  0 ) )  /\  z  =  ( abs `  ( F `
 x ) ) )  ->  ( 0  <  z  <->  0  <  ( abs `  ( F `
 x ) ) ) )
425ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
4342adantrr 753 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR  /\  ( F `
 x )  =/=  0 ) )  -> 
( F `  x
)  e.  RR )
4443recnd 10068 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( F `
 x )  =/=  0 ) )  -> 
( F `  x
)  e.  CC )
45 simprr 796 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( F `
 x )  =/=  0 ) )  -> 
( F `  x
)  =/=  0 )
4644, 45absrpcld 14187 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( F `
 x )  =/=  0 ) )  -> 
( abs `  ( F `  x )
)  e.  RR+ )
4746rpgt0d 11875 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( F `
 x )  =/=  0 ) )  -> 
0  <  ( abs `  ( F `  x
) ) )
4839, 41, 47rspcedvd 3317 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( F `
 x )  =/=  0 ) )  ->  E. z  e.  ( abs " ( F " RR ) ) 0  < 
z )
4932, 48rexlimddv 3035 . 2  |-  ( ph  ->  E. z  e.  ( abs " ( F
" RR ) ) 0  <  z )
5015, 23, 30, 31, 49suprlubrd 38470 1  |-  ( ph  ->  0  <  sup (
( abs " ( F " RR ) ) ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ran crn 5115   "cima 5117    o. ccom 5118   -->wf 5884   ` cfv 5888   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    <_ cle 10075   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  imo72b2  38475
  Copyright terms: Public domain W3C validator