| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infpnlem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for infpn 15616. The smallest divisor (greater than 1) |
| Ref | Expression |
|---|---|
| infpnlem.1 |
|
| Ref | Expression |
|---|---|
| infpnlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 11027 |
. . . . . . . 8
| |
| 2 | nnre 11027 |
. . . . . . . 8
| |
| 3 | lenlt 10116 |
. . . . . . . 8
| |
| 4 | 1, 2, 3 | syl2anr 495 |
. . . . . . 7
|
| 5 | 4 | adantr 481 |
. . . . . 6
|
| 6 | nnnn0 11299 |
. . . . . . . 8
| |
| 7 | facndiv 13075 |
. . . . . . . . 9
| |
| 8 | infpnlem.1 |
. . . . . . . . . . 11
| |
| 9 | 8 | oveq1i 6660 |
. . . . . . . . . 10
|
| 10 | nnz 11399 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | syl5eqelr 2706 |
. . . . . . . . 9
|
| 12 | 7, 11 | nsyl 135 |
. . . . . . . 8
|
| 13 | 6, 12 | sylanl1 682 |
. . . . . . 7
|
| 14 | 13 | expr 643 |
. . . . . 6
|
| 15 | 5, 14 | sylbird 250 |
. . . . 5
|
| 16 | 15 | con4d 114 |
. . . 4
|
| 17 | 16 | expimpd 629 |
. . 3
|
| 18 | 17 | adantrd 484 |
. 2
|
| 19 | faccl 13070 |
. . . . . . . . . . . . . . . . . . . . . 22
| |
| 20 | 6, 19 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 21 | 20 | peano2nnd 11037 |
. . . . . . . . . . . . . . . . . . . 20
|
| 22 | 8, 21 | syl5eqel 2705 |
. . . . . . . . . . . . . . . . . . 19
|
| 23 | 22 | nncnd 11036 |
. . . . . . . . . . . . . . . . . 18
|
| 24 | nndivtr 11062 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 25 | 24 | ex 450 |
. . . . . . . . . . . . . . . . . . . 20
|
| 26 | 25 | 3com13 1270 |
. . . . . . . . . . . . . . . . . . 19
|
| 27 | 26 | 3expa 1265 |
. . . . . . . . . . . . . . . . . 18
|
| 28 | 23, 27 | sylanl1 682 |
. . . . . . . . . . . . . . . . 17
|
| 29 | 28 | adantrl 752 |
. . . . . . . . . . . . . . . 16
|
| 30 | nnre 11027 |
. . . . . . . . . . . . . . . . . . . . . . . 24
| |
| 31 | letri3 10123 |
. . . . . . . . . . . . . . . . . . . . . . . 24
| |
| 32 | 30, 1, 31 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . 23
|
| 33 | 32 | biimprd 238 |
. . . . . . . . . . . . . . . . . . . . . 22
|
| 34 | 33 | exp4b 632 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 35 | 34 | com3l 89 |
. . . . . . . . . . . . . . . . . . . 20
|
| 36 | 35 | imp32 449 |
. . . . . . . . . . . . . . . . . . 19
|
| 37 | 36 | adantll 750 |
. . . . . . . . . . . . . . . . . 18
|
| 38 | 37 | imim2d 57 |
. . . . . . . . . . . . . . . . 17
|
| 39 | 38 | com23 86 |
. . . . . . . . . . . . . . . 16
|
| 40 | 29, 39 | sylan2d 499 |
. . . . . . . . . . . . . . 15
|
| 41 | 40 | exp4d 637 |
. . . . . . . . . . . . . 14
|
| 42 | 41 | com24 95 |
. . . . . . . . . . . . 13
|
| 43 | 42 | exp32 631 |
. . . . . . . . . . . 12
|
| 44 | 43 | com24 95 |
. . . . . . . . . . 11
|
| 45 | 44 | imp31 448 |
. . . . . . . . . 10
|
| 46 | 45 | com14 96 |
. . . . . . . . 9
|
| 47 | 46 | 3imp 1256 |
. . . . . . . 8
|
| 48 | 47 | com3l 89 |
. . . . . . 7
|
| 49 | 48 | ralimdva 2962 |
. . . . . 6
|
| 50 | 49 | ex 450 |
. . . . 5
|
| 51 | 50 | adantld 483 |
. . . 4
|
| 52 | 51 | impd 447 |
. . 3
|
| 53 | prime 11458 |
. . . 4
| |
| 54 | 53 | adantl 482 |
. . 3
|
| 55 | 52, 54 | sylibrd 249 |
. 2
|
| 56 | 18, 55 | jcad 555 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-seq 12802 df-fac 13061 |
| This theorem is referenced by: infpnlem2 15615 |
| Copyright terms: Public domain | W3C validator |