Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsubval Structured version   Visualization version   Unicode version

Theorem ldualvsubval 34444
Description: The value of the value of vector subtraction in the dual of a vector space. TODO: shorten with ldualvsub 34442? (Requires  D to oppr conversion.) (Contributed by NM, 26-Feb-2015.)
Hypotheses
Ref Expression
ldualvsubval.v  |-  V  =  ( Base `  W
)
ldualvsubval.r  |-  R  =  (Scalar `  W )
ldualvsubval.s  |-  S  =  ( -g `  R
)
ldualvsubval.f  |-  F  =  (LFnl `  W )
ldualvsubval.d  |-  D  =  (LDual `  W )
ldualvsubval.m  |-  .-  =  ( -g `  D )
ldualvsubval.w  |-  ( ph  ->  W  e.  LMod )
ldualvsubval.g  |-  ( ph  ->  G  e.  F )
ldualvsubval.h  |-  ( ph  ->  H  e.  F )
ldualvsubval.x  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
ldualvsubval  |-  ( ph  ->  ( ( G  .-  H ) `  X
)  =  ( ( G `  X ) S ( H `  X ) ) )

Proof of Theorem ldualvsubval
StepHypRef Expression
1 ldualvsubval.d . . . . 5  |-  D  =  (LDual `  W )
2 ldualvsubval.w . . . . 5  |-  ( ph  ->  W  e.  LMod )
31, 2lduallmod 34440 . . . 4  |-  ( ph  ->  D  e.  LMod )
4 ldualvsubval.f . . . . 5  |-  F  =  (LFnl `  W )
5 eqid 2622 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
6 ldualvsubval.g . . . . 5  |-  ( ph  ->  G  e.  F )
74, 1, 5, 2, 6ldualelvbase 34414 . . . 4  |-  ( ph  ->  G  e.  ( Base `  D ) )
8 ldualvsubval.h . . . . 5  |-  ( ph  ->  H  e.  F )
94, 1, 5, 2, 8ldualelvbase 34414 . . . 4  |-  ( ph  ->  H  e.  ( Base `  D ) )
10 eqid 2622 . . . . 5  |-  ( +g  `  D )  =  ( +g  `  D )
11 ldualvsubval.m . . . . 5  |-  .-  =  ( -g `  D )
12 eqid 2622 . . . . 5  |-  (Scalar `  D )  =  (Scalar `  D )
13 eqid 2622 . . . . 5  |-  ( .s
`  D )  =  ( .s `  D
)
14 eqid 2622 . . . . 5  |-  ( invg `  (Scalar `  D ) )  =  ( invg `  (Scalar `  D ) )
15 eqid 2622 . . . . 5  |-  ( 1r
`  (Scalar `  D )
)  =  ( 1r
`  (Scalar `  D )
)
165, 10, 11, 12, 13, 14, 15lmodvsubval2 18918 . . . 4  |-  ( ( D  e.  LMod  /\  G  e.  ( Base `  D
)  /\  H  e.  ( Base `  D )
)  ->  ( G  .-  H )  =  ( G ( +g  `  D
) ( ( ( invg `  (Scalar `  D ) ) `  ( 1r `  (Scalar `  D ) ) ) ( .s `  D
) H ) ) )
173, 7, 9, 16syl3anc 1326 . . 3  |-  ( ph  ->  ( G  .-  H
)  =  ( G ( +g  `  D
) ( ( ( invg `  (Scalar `  D ) ) `  ( 1r `  (Scalar `  D ) ) ) ( .s `  D
) H ) ) )
1817fveq1d 6193 . 2  |-  ( ph  ->  ( ( G  .-  H ) `  X
)  =  ( ( G ( +g  `  D
) ( ( ( invg `  (Scalar `  D ) ) `  ( 1r `  (Scalar `  D ) ) ) ( .s `  D
) H ) ) `
 X ) )
19 ldualvsubval.v . . 3  |-  V  =  ( Base `  W
)
20 ldualvsubval.r . . 3  |-  R  =  (Scalar `  W )
21 eqid 2622 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
22 eqid 2622 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2312lmodfgrp 18872 . . . . . . 7  |-  ( D  e.  LMod  ->  (Scalar `  D )  e.  Grp )
243, 23syl 17 . . . . . 6  |-  ( ph  ->  (Scalar `  D )  e.  Grp )
2512lmodring 18871 . . . . . . . 8  |-  ( D  e.  LMod  ->  (Scalar `  D )  e.  Ring )
263, 25syl 17 . . . . . . 7  |-  ( ph  ->  (Scalar `  D )  e.  Ring )
27 eqid 2622 . . . . . . . 8  |-  ( Base `  (Scalar `  D )
)  =  ( Base `  (Scalar `  D )
)
2827, 15ringidcl 18568 . . . . . . 7  |-  ( (Scalar `  D )  e.  Ring  -> 
( 1r `  (Scalar `  D ) )  e.  ( Base `  (Scalar `  D ) ) )
2926, 28syl 17 . . . . . 6  |-  ( ph  ->  ( 1r `  (Scalar `  D ) )  e.  ( Base `  (Scalar `  D ) ) )
3027, 14grpinvcl 17467 . . . . . 6  |-  ( ( (Scalar `  D )  e.  Grp  /\  ( 1r
`  (Scalar `  D )
)  e.  ( Base `  (Scalar `  D )
) )  ->  (
( invg `  (Scalar `  D ) ) `
 ( 1r `  (Scalar `  D ) ) )  e.  ( Base `  (Scalar `  D )
) )
3124, 29, 30syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( invg `  (Scalar `  D )
) `  ( 1r `  (Scalar `  D )
) )  e.  (
Base `  (Scalar `  D
) ) )
3220, 22, 1, 12, 27, 2ldualsbase 34420 . . . . 5  |-  ( ph  ->  ( Base `  (Scalar `  D ) )  =  ( Base `  R
) )
3331, 32eleqtrd 2703 . . . 4  |-  ( ph  ->  ( ( invg `  (Scalar `  D )
) `  ( 1r `  (Scalar `  D )
) )  e.  (
Base `  R )
)
344, 20, 22, 1, 13, 2, 33, 8ldualvscl 34426 . . 3  |-  ( ph  ->  ( ( ( invg `  (Scalar `  D ) ) `  ( 1r `  (Scalar `  D ) ) ) ( .s `  D
) H )  e.  F )
35 ldualvsubval.x . . 3  |-  ( ph  ->  X  e.  V )
3619, 20, 21, 4, 1, 10, 2, 6, 34, 35ldualvaddval 34418 . 2  |-  ( ph  ->  ( ( G ( +g  `  D ) ( ( ( invg `  (Scalar `  D ) ) `  ( 1r `  (Scalar `  D ) ) ) ( .s `  D
) H ) ) `
 X )  =  ( ( G `  X ) ( +g  `  R ) ( ( ( ( invg `  (Scalar `  D )
) `  ( 1r `  (Scalar `  D )
) ) ( .s
`  D ) H ) `  X ) ) )
37 eqid 2622 . . . . . . . . 9  |-  ( invg `  R )  =  ( invg `  R )
3820, 37, 1, 12, 14, 2ldualneg 34436 . . . . . . . 8  |-  ( ph  ->  ( invg `  (Scalar `  D ) )  =  ( invg `  R ) )
39 eqid 2622 . . . . . . . . 9  |-  ( 1r
`  R )  =  ( 1r `  R
)
4020, 39, 1, 12, 15, 2ldual1 34435 . . . . . . . 8  |-  ( ph  ->  ( 1r `  (Scalar `  D ) )  =  ( 1r `  R
) )
4138, 40fveq12d 6197 . . . . . . 7  |-  ( ph  ->  ( ( invg `  (Scalar `  D )
) `  ( 1r `  (Scalar `  D )
) )  =  ( ( invg `  R ) `  ( 1r `  R ) ) )
4241oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( ( invg `  (Scalar `  D ) ) `  ( 1r `  (Scalar `  D ) ) ) ( .s `  D
) H )  =  ( ( ( invg `  R ) `
 ( 1r `  R ) ) ( .s `  D ) H ) )
4342fveq1d 6193 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  (Scalar `  D ) ) `  ( 1r `  (Scalar `  D ) ) ) ( .s `  D
) H ) `  X )  =  ( ( ( ( invg `  R ) `
 ( 1r `  R ) ) ( .s `  D ) H ) `  X
) )
44 eqid 2622 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
4520lmodring 18871 . . . . . . . . 9  |-  ( W  e.  LMod  ->  R  e. 
Ring )
462, 45syl 17 . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
47 ringgrp 18552 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Grp )
4846, 47syl 17 . . . . . . 7  |-  ( ph  ->  R  e.  Grp )
4920, 22, 39lmod1cl 18890 . . . . . . . 8  |-  ( W  e.  LMod  ->  ( 1r
`  R )  e.  ( Base `  R
) )
502, 49syl 17 . . . . . . 7  |-  ( ph  ->  ( 1r `  R
)  e.  ( Base `  R ) )
5122, 37grpinvcl 17467 . . . . . . 7  |-  ( ( R  e.  Grp  /\  ( 1r `  R )  e.  ( Base `  R
) )  ->  (
( invg `  R ) `  ( 1r `  R ) )  e.  ( Base `  R
) )
5248, 50, 51syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( invg `  R ) `  ( 1r `  R ) )  e.  ( Base `  R
) )
534, 19, 20, 22, 44, 1, 13, 2, 52, 8, 35ldualvsval 34425 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  R
) `  ( 1r `  R ) ) ( .s `  D ) H ) `  X
)  =  ( ( H `  X ) ( .r `  R
) ( ( invg `  R ) `
 ( 1r `  R ) ) ) )
5420, 22, 19, 4lflcl 34351 . . . . . . 7  |-  ( ( W  e.  LMod  /\  H  e.  F  /\  X  e.  V )  ->  ( H `  X )  e.  ( Base `  R
) )
552, 8, 35, 54syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( H `  X
)  e.  ( Base `  R ) )
5622, 44, 39, 37, 46, 55rngnegr 18595 . . . . 5  |-  ( ph  ->  ( ( H `  X ) ( .r
`  R ) ( ( invg `  R ) `  ( 1r `  R ) ) )  =  ( ( invg `  R
) `  ( H `  X ) ) )
5743, 53, 563eqtrd 2660 . . . 4  |-  ( ph  ->  ( ( ( ( invg `  (Scalar `  D ) ) `  ( 1r `  (Scalar `  D ) ) ) ( .s `  D
) H ) `  X )  =  ( ( invg `  R ) `  ( H `  X )
) )
5857oveq2d 6666 . . 3  |-  ( ph  ->  ( ( G `  X ) ( +g  `  R ) ( ( ( ( invg `  (Scalar `  D )
) `  ( 1r `  (Scalar `  D )
) ) ( .s
`  D ) H ) `  X ) )  =  ( ( G `  X ) ( +g  `  R
) ( ( invg `  R ) `
 ( H `  X ) ) ) )
5920, 22, 19, 4lflcl 34351 . . . . 5  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  X  e.  V )  ->  ( G `  X )  e.  ( Base `  R
) )
602, 6, 35, 59syl3anc 1326 . . . 4  |-  ( ph  ->  ( G `  X
)  e.  ( Base `  R ) )
61 ldualvsubval.s . . . . 5  |-  S  =  ( -g `  R
)
6222, 21, 37, 61grpsubval 17465 . . . 4  |-  ( ( ( G `  X
)  e.  ( Base `  R )  /\  ( H `  X )  e.  ( Base `  R
) )  ->  (
( G `  X
) S ( H `
 X ) )  =  ( ( G `
 X ) ( +g  `  R ) ( ( invg `  R ) `  ( H `  X )
) ) )
6360, 55, 62syl2anc 693 . . 3  |-  ( ph  ->  ( ( G `  X ) S ( H `  X ) )  =  ( ( G `  X ) ( +g  `  R
) ( ( invg `  R ) `
 ( H `  X ) ) ) )
6458, 63eqtr4d 2659 . 2  |-  ( ph  ->  ( ( G `  X ) ( +g  `  R ) ( ( ( ( invg `  (Scalar `  D )
) `  ( 1r `  (Scalar `  D )
) ) ( .s
`  D ) H ) `  X ) )  =  ( ( G `  X ) S ( H `  X ) ) )
6518, 36, 643eqtrd 2660 1  |-  ( ph  ->  ( ( G  .-  H ) `  X
)  =  ( ( G `  X ) S ( H `  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   Grpcgrp 17422   invgcminusg 17423   -gcsg 17424   1rcur 18501   Ringcrg 18547   LModclmod 18863  LFnlclfn 34344  LDualcld 34410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-lmod 18865  df-lfl 34345  df-ldual 34411
This theorem is referenced by:  lcfrlem1  36831
  Copyright terms: Public domain W3C validator