Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem1 Structured version   Visualization version   Unicode version

Theorem lcfrlem1 36831
Description: Lemma for lcfr 36874. Note that  X is z in Mario's notes. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v  |-  V  =  ( Base `  U
)
lcfrlem1.s  |-  S  =  (Scalar `  U )
lcfrlem1.q  |-  .X.  =  ( .r `  S )
lcfrlem1.z  |-  .0.  =  ( 0g `  S )
lcfrlem1.i  |-  I  =  ( invr `  S
)
lcfrlem1.f  |-  F  =  (LFnl `  U )
lcfrlem1.d  |-  D  =  (LDual `  U )
lcfrlem1.t  |-  .x.  =  ( .s `  D )
lcfrlem1.m  |-  .-  =  ( -g `  D )
lcfrlem1.u  |-  ( ph  ->  U  e.  LVec )
lcfrlem1.e  |-  ( ph  ->  E  e.  F )
lcfrlem1.g  |-  ( ph  ->  G  e.  F )
lcfrlem1.x  |-  ( ph  ->  X  e.  V )
lcfrlem1.n  |-  ( ph  ->  ( G `  X
)  =/=  .0.  )
lcfrlem1.h  |-  H  =  ( E  .-  (
( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )
Assertion
Ref Expression
lcfrlem1  |-  ( ph  ->  ( H `  X
)  =  .0.  )

Proof of Theorem lcfrlem1
StepHypRef Expression
1 lcfrlem1.h . . 3  |-  H  =  ( E  .-  (
( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )
21fveq1i 6192 . 2  |-  ( H `
 X )  =  ( ( E  .-  ( ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) ) `  X )
3 lcfrlem1.v . . . 4  |-  V  =  ( Base `  U
)
4 lcfrlem1.s . . . 4  |-  S  =  (Scalar `  U )
5 eqid 2622 . . . 4  |-  ( -g `  S )  =  (
-g `  S )
6 lcfrlem1.f . . . 4  |-  F  =  (LFnl `  U )
7 lcfrlem1.d . . . 4  |-  D  =  (LDual `  U )
8 lcfrlem1.m . . . 4  |-  .-  =  ( -g `  D )
9 lcfrlem1.u . . . . 5  |-  ( ph  ->  U  e.  LVec )
10 lveclmod 19106 . . . . 5  |-  ( U  e.  LVec  ->  U  e. 
LMod )
119, 10syl 17 . . . 4  |-  ( ph  ->  U  e.  LMod )
12 lcfrlem1.e . . . 4  |-  ( ph  ->  E  e.  F )
13 eqid 2622 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
14 lcfrlem1.t . . . . 5  |-  .x.  =  ( .s `  D )
154lvecdrng 19105 . . . . . . . 8  |-  ( U  e.  LVec  ->  S  e.  DivRing )
169, 15syl 17 . . . . . . 7  |-  ( ph  ->  S  e.  DivRing )
17 lcfrlem1.g . . . . . . . 8  |-  ( ph  ->  G  e.  F )
18 lcfrlem1.x . . . . . . . 8  |-  ( ph  ->  X  e.  V )
194, 13, 3, 6lflcl 34351 . . . . . . . 8  |-  ( ( U  e.  LVec  /\  G  e.  F  /\  X  e.  V )  ->  ( G `  X )  e.  ( Base `  S
) )
209, 17, 18, 19syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( G `  X
)  e.  ( Base `  S ) )
21 lcfrlem1.n . . . . . . 7  |-  ( ph  ->  ( G `  X
)  =/=  .0.  )
22 lcfrlem1.z . . . . . . . 8  |-  .0.  =  ( 0g `  S )
23 lcfrlem1.i . . . . . . . 8  |-  I  =  ( invr `  S
)
2413, 22, 23drnginvrcl 18764 . . . . . . 7  |-  ( ( S  e.  DivRing  /\  ( G `  X )  e.  ( Base `  S
)  /\  ( G `  X )  =/=  .0.  )  ->  ( I `  ( G `  X ) )  e.  ( Base `  S ) )
2516, 20, 21, 24syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( I `  ( G `  X )
)  e.  ( Base `  S ) )
264, 13, 3, 6lflcl 34351 . . . . . . 7  |-  ( ( U  e.  LVec  /\  E  e.  F  /\  X  e.  V )  ->  ( E `  X )  e.  ( Base `  S
) )
279, 12, 18, 26syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( E `  X
)  e.  ( Base `  S ) )
28 lcfrlem1.q . . . . . . 7  |-  .X.  =  ( .r `  S )
294, 13, 28lmodmcl 18875 . . . . . 6  |-  ( ( U  e.  LMod  /\  (
I `  ( G `  X ) )  e.  ( Base `  S
)  /\  ( E `  X )  e.  (
Base `  S )
)  ->  ( (
I `  ( G `  X ) )  .X.  ( E `  X ) )  e.  ( Base `  S ) )
3011, 25, 27, 29syl3anc 1326 . . . . 5  |-  ( ph  ->  ( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  e.  ( Base `  S
) )
316, 4, 13, 7, 14, 11, 30, 17ldualvscl 34426 . . . 4  |-  ( ph  ->  ( ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) )  .x.  G )  e.  F )
323, 4, 5, 6, 7, 8, 11, 12, 31, 18ldualvsubval 34444 . . 3  |-  ( ph  ->  ( ( E  .-  ( ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) ) `  X )  =  ( ( E `
 X ) (
-g `  S )
( ( ( ( I `  ( G `
 X ) ) 
.X.  ( E `  X ) )  .x.  G ) `  X
) ) )
336, 3, 4, 13, 28, 7, 14, 9, 30, 17, 18ldualvsval 34425 . . . . 5  |-  ( ph  ->  ( ( ( ( I `  ( G `
 X ) ) 
.X.  ( E `  X ) )  .x.  G ) `  X
)  =  ( ( G `  X ) 
.X.  ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) ) ) )
34 eqid 2622 . . . . . . . . 9  |-  ( 1r
`  S )  =  ( 1r `  S
)
3513, 22, 28, 34, 23drnginvrr 18767 . . . . . . . 8  |-  ( ( S  e.  DivRing  /\  ( G `  X )  e.  ( Base `  S
)  /\  ( G `  X )  =/=  .0.  )  ->  ( ( G `
 X )  .X.  ( I `  ( G `  X )
) )  =  ( 1r `  S ) )
3616, 20, 21, 35syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( ( G `  X )  .X.  (
I `  ( G `  X ) ) )  =  ( 1r `  S ) )
3736oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( ( G `
 X )  .X.  ( I `  ( G `  X )
) )  .X.  ( E `  X )
)  =  ( ( 1r `  S ) 
.X.  ( E `  X ) ) )
384lmodring 18871 . . . . . . . 8  |-  ( U  e.  LMod  ->  S  e. 
Ring )
3911, 38syl 17 . . . . . . 7  |-  ( ph  ->  S  e.  Ring )
4013, 28ringass 18564 . . . . . . 7  |-  ( ( S  e.  Ring  /\  (
( G `  X
)  e.  ( Base `  S )  /\  (
I `  ( G `  X ) )  e.  ( Base `  S
)  /\  ( E `  X )  e.  (
Base `  S )
) )  ->  (
( ( G `  X )  .X.  (
I `  ( G `  X ) ) ) 
.X.  ( E `  X ) )  =  ( ( G `  X )  .X.  (
( I `  ( G `  X )
)  .X.  ( E `  X ) ) ) )
4139, 20, 25, 27, 40syl13anc 1328 . . . . . 6  |-  ( ph  ->  ( ( ( G `
 X )  .X.  ( I `  ( G `  X )
) )  .X.  ( E `  X )
)  =  ( ( G `  X ) 
.X.  ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) ) ) )
4213, 28, 34ringlidm 18571 . . . . . . 7  |-  ( ( S  e.  Ring  /\  ( E `  X )  e.  ( Base `  S
) )  ->  (
( 1r `  S
)  .X.  ( E `  X ) )  =  ( E `  X
) )
4339, 27, 42syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( 1r `  S )  .X.  ( E `  X )
)  =  ( E `
 X ) )
4437, 41, 433eqtr3d 2664 . . . . 5  |-  ( ph  ->  ( ( G `  X )  .X.  (
( I `  ( G `  X )
)  .X.  ( E `  X ) ) )  =  ( E `  X ) )
4533, 44eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( ( ( I `  ( G `
 X ) ) 
.X.  ( E `  X ) )  .x.  G ) `  X
)  =  ( E `
 X ) )
4645oveq2d 6666 . . 3  |-  ( ph  ->  ( ( E `  X ) ( -g `  S ) ( ( ( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) `  X
) )  =  ( ( E `  X
) ( -g `  S
) ( E `  X ) ) )
474lmodfgrp 18872 . . . . 5  |-  ( U  e.  LMod  ->  S  e. 
Grp )
4811, 47syl 17 . . . 4  |-  ( ph  ->  S  e.  Grp )
4913, 22, 5grpsubid 17499 . . . 4  |-  ( ( S  e.  Grp  /\  ( E `  X )  e.  ( Base `  S
) )  ->  (
( E `  X
) ( -g `  S
) ( E `  X ) )  =  .0.  )
5048, 27, 49syl2anc 693 . . 3  |-  ( ph  ->  ( ( E `  X ) ( -g `  S ) ( E `
 X ) )  =  .0.  )
5132, 46, 503eqtrd 2660 . 2  |-  ( ph  ->  ( ( E  .-  ( ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) ) `  X )  =  .0.  )
522, 51syl5eq 2668 1  |-  ( ph  ->  ( H `  X
)  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   Grpcgrp 17422   -gcsg 17424   1rcur 18501   Ringcrg 18547   invrcinvr 18671   DivRingcdr 18747   LModclmod 18863   LVecclvec 19102  LFnlclfn 34344  LDualcld 34410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lvec 19103  df-lfl 34345  df-ldual 34411
This theorem is referenced by:  lcfrlem3  36833
  Copyright terms: Public domain W3C validator