Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climlimsupcex Structured version   Visualization version   Unicode version

Theorem climlimsupcex 40001
Description: Counterexample for climlimsup 39992, showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn 9954 and its comment) (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climlimsupcex.1  |-  -.  M  e.  ZZ
climlimsupcex.2  |-  Z  =  ( ZZ>= `  M )
climlimsupcex.3  |-  F  =  (/)
Assertion
Ref Expression
climlimsupcex  |-  ( (
(/)  e.  CC  /\  -. -oo  e.  CC )  -> 
( F : Z --> RR  /\  F  e.  dom  ~~>  /\ 
-.  F  ~~>  ( limsup `  F ) ) )

Proof of Theorem climlimsupcex
StepHypRef Expression
1 f0 6086 . . . 4  |-  (/) : (/) --> RR
2 climlimsupcex.3 . . . . 5  |-  F  =  (/)
3 climlimsupcex.2 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
4 climlimsupcex.1 . . . . . . 7  |-  -.  M  e.  ZZ
5 uz0 39639 . . . . . . 7  |-  ( -.  M  e.  ZZ  ->  (
ZZ>= `  M )  =  (/) )
64, 5ax-mp 5 . . . . . 6  |-  ( ZZ>= `  M )  =  (/)
73, 6eqtri 2644 . . . . 5  |-  Z  =  (/)
82, 7feq12i 6038 . . . 4  |-  ( F : Z --> RR  <->  (/) : (/) --> RR )
91, 8mpbir 221 . . 3  |-  F : Z
--> RR
109a1i 11 . 2  |-  ( (
(/)  e.  CC  /\  -. -oo  e.  CC )  ->  F : Z --> RR )
11 climrel 14223 . . . . 5  |-  Rel  ~~>
1211a1i 11 . . . 4  |-  ( (/)  e.  CC  ->  Rel  ~~>  )
13 0cnv 39974 . . . . 5  |-  ( (/)  e.  CC  ->  (/)  ~~>  (/) )
142, 13syl5eqbr 4688 . . . 4  |-  ( (/)  e.  CC  ->  F  ~~>  (/) )
15 releldm 5358 . . . 4  |-  ( ( Rel  ~~>  /\  F  ~~>  (/) )  ->  F  e.  dom  ~~>  )
1612, 14, 15syl2anc 693 . . 3  |-  ( (/)  e.  CC  ->  F  e.  dom 
~~>  )
1716adantr 481 . 2  |-  ( (
(/)  e.  CC  /\  -. -oo  e.  CC )  ->  F  e.  dom  ~~>  )
1813adantr 481 . . . 4  |-  ( (
(/)  e.  CC  /\  F  ~~>  ( limsup `  F )
)  ->  (/)  ~~>  (/) )
1918adantlr 751 . . 3  |-  ( ( ( (/)  e.  CC  /\ 
-. -oo  e.  CC )  /\  F  ~~>  ( limsup `  F ) )  ->  (/)  ~~>  (/) )
20 simpr 477 . . . . . 6  |-  ( ( F  ~~>  ( limsup `  F
)  /\  (/)  ~~>  (/) )  ->  (/)  ~~>  (/) )
212fveq2i 6194 . . . . . . . . . 10  |-  ( limsup `  F )  =  (
limsup `  (/) )
22 limsup0 39926 . . . . . . . . . 10  |-  ( limsup `  (/) )  = -oo
2321, 22eqtri 2644 . . . . . . . . 9  |-  ( limsup `  F )  = -oo
242, 23breq12i 4662 . . . . . . . 8  |-  ( F  ~~>  ( limsup `  F )  <->  (/)  ~~> -oo )
2524biimpi 206 . . . . . . 7  |-  ( F  ~~>  ( limsup `  F )  -> 
(/) 
~~> -oo )
2625adantr 481 . . . . . 6  |-  ( ( F  ~~>  ( limsup `  F
)  /\  (/)  ~~>  (/) )  ->  (/)  ~~> -oo )
27 climuni 14283 . . . . . 6  |-  ( (
(/) 
~~>  (/)  /\  (/)  ~~> -oo )  -> 
(/)  = -oo )
2820, 26, 27syl2anc 693 . . . . 5  |-  ( ( F  ~~>  ( limsup `  F
)  /\  (/)  ~~>  (/) )  ->  (/)  = -oo )
2928adantll 750 . . . 4  |-  ( ( ( ( (/)  e.  CC  /\ 
-. -oo  e.  CC )  /\  F  ~~>  ( limsup `  F ) )  /\  (/)  ~~>  (/) )  ->  (/)  = -oo )
30 nelneq 2725 . . . . 5  |-  ( (
(/)  e.  CC  /\  -. -oo  e.  CC )  ->  -.  (/)  = -oo )
3130ad2antrr 762 . . . 4  |-  ( ( ( ( (/)  e.  CC  /\ 
-. -oo  e.  CC )  /\  F  ~~>  ( limsup `  F ) )  /\  (/)  ~~>  (/) )  ->  -.  (/)  = -oo )
3229, 31pm2.65da 600 . . 3  |-  ( ( ( (/)  e.  CC  /\ 
-. -oo  e.  CC )  /\  F  ~~>  ( limsup `  F ) )  ->  -.  (/)  ~~>  (/) )
3319, 32pm2.65da 600 . 2  |-  ( (
(/)  e.  CC  /\  -. -oo  e.  CC )  ->  -.  F  ~~>  ( limsup `  F ) )
3410, 17, 333jca 1242 1  |-  ( (
(/)  e.  CC  /\  -. -oo  e.  CC )  -> 
( F : Z --> RR  /\  F  e.  dom  ~~>  /\ 
-.  F  ~~>  ( limsup `  F ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   (/)c0 3915   class class class wbr 4653   dom cdm 5114   Rel wrel 5119   -->wf 5884   ` cfv 5888   CCcc 9934   RRcr 9935   -oocmnf 10072   ZZcz 11377   ZZ>=cuz 11687   limsupclsp 14201    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator