MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmima Structured version   Visualization version   Unicode version

Theorem lmhmima 19047
Description: The image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmima.x  |-  X  =  ( LSubSp `  S )
lmhmima.y  |-  Y  =  ( LSubSp `  T )
Assertion
Ref Expression
lmhmima  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  ( F " U )  e.  Y )

Proof of Theorem lmhmima
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmghm 19031 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
21adantr 481 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  F  e.  ( S  GrpHom  T ) )
3 lmhmlmod1 19033 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
43adantr 481 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  S  e.  LMod )
5 simpr 477 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  U  e.  X )
6 lmhmima.x . . . . 5  |-  X  =  ( LSubSp `  S )
76lsssubg 18957 . . . 4  |-  ( ( S  e.  LMod  /\  U  e.  X )  ->  U  e.  (SubGrp `  S )
)
84, 5, 7syl2anc 693 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  U  e.  (SubGrp `  S )
)
9 ghmima 17681 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (SubGrp `  S )
)  ->  ( F " U )  e.  (SubGrp `  T ) )
102, 8, 9syl2anc 693 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  ( F " U )  e.  (SubGrp `  T )
)
11 eqid 2622 . . . . . . . . . 10  |-  ( Base `  S )  =  (
Base `  S )
12 eqid 2622 . . . . . . . . . 10  |-  ( Base `  T )  =  (
Base `  T )
1311, 12lmhmf 19034 . . . . . . . . 9  |-  ( F  e.  ( S LMHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
1413adantr 481 . . . . . . . 8  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  F : ( Base `  S
) --> ( Base `  T
) )
15 ffn 6045 . . . . . . . 8  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  F  Fn  ( Base `  S )
)
1614, 15syl 17 . . . . . . 7  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  F  Fn  ( Base `  S
) )
1711, 6lssss 18937 . . . . . . . 8  |-  ( U  e.  X  ->  U  C_  ( Base `  S
) )
185, 17syl 17 . . . . . . 7  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  U  C_  ( Base `  S
) )
19 fvelimab 6253 . . . . . . 7  |-  ( ( F  Fn  ( Base `  S )  /\  U  C_  ( Base `  S
) )  ->  (
b  e.  ( F
" U )  <->  E. c  e.  U  ( F `  c )  =  b ) )
2016, 18, 19syl2anc 693 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  (
b  e.  ( F
" U )  <->  E. c  e.  U  ( F `  c )  =  b ) )
2120adantr 481 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  a  e.  ( Base `  (Scalar `  T
) ) )  -> 
( b  e.  ( F " U )  <->  E. c  e.  U  ( F `  c )  =  b ) )
22 simpll 790 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  ->  F  e.  ( S LMHom  T ) )
23 eqid 2622 . . . . . . . . . . . . . . . 16  |-  (Scalar `  S )  =  (Scalar `  S )
24 eqid 2622 . . . . . . . . . . . . . . . 16  |-  (Scalar `  T )  =  (Scalar `  T )
2523, 24lmhmsca 19030 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( S LMHom  T
)  ->  (Scalar `  T
)  =  (Scalar `  S ) )
2625adantr 481 . . . . . . . . . . . . . 14  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  (Scalar `  T )  =  (Scalar `  S ) )
2726fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  ( Base `  (Scalar `  T
) )  =  (
Base `  (Scalar `  S
) ) )
2827eleq2d 2687 . . . . . . . . . . . 12  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  (
a  e.  ( Base `  (Scalar `  T )
)  <->  a  e.  (
Base `  (Scalar `  S
) ) ) )
2928biimpa 501 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  a  e.  ( Base `  (Scalar `  T
) ) )  -> 
a  e.  ( Base `  (Scalar `  S )
) )
3029adantrr 753 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  -> 
a  e.  ( Base `  (Scalar `  S )
) )
3118sselda 3603 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  c  e.  U
)  ->  c  e.  ( Base `  S )
)
3231adantrl 752 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  -> 
c  e.  ( Base `  S ) )
33 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  (Scalar `  S )
)  =  ( Base `  (Scalar `  S )
)
34 eqid 2622 . . . . . . . . . . 11  |-  ( .s
`  S )  =  ( .s `  S
)
35 eqid 2622 . . . . . . . . . . 11  |-  ( .s
`  T )  =  ( .s `  T
)
3623, 33, 11, 34, 35lmhmlin 19035 . . . . . . . . . 10  |-  ( ( F  e.  ( S LMHom 
T )  /\  a  e.  ( Base `  (Scalar `  S ) )  /\  c  e.  ( Base `  S ) )  -> 
( F `  (
a ( .s `  S ) c ) )  =  ( a ( .s `  T
) ( F `  c ) ) )
3722, 30, 32, 36syl3anc 1326 . . . . . . . . 9  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  -> 
( F `  (
a ( .s `  S ) c ) )  =  ( a ( .s `  T
) ( F `  c ) ) )
3822, 13, 153syl 18 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  ->  F  Fn  ( Base `  S ) )
39 simplr 792 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  ->  U  e.  X )
4039, 17syl 17 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  ->  U  C_  ( Base `  S
) )
414adantr 481 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  ->  S  e.  LMod )
42 simprr 796 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  -> 
c  e.  U )
4323, 34, 33, 6lssvscl 18955 . . . . . . . . . . 11  |-  ( ( ( S  e.  LMod  /\  U  e.  X )  /\  ( a  e.  ( Base `  (Scalar `  S ) )  /\  c  e.  U )
)  ->  ( a
( .s `  S
) c )  e.  U )
4441, 39, 30, 42, 43syl22anc 1327 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  -> 
( a ( .s
`  S ) c )  e.  U )
45 fnfvima 6496 . . . . . . . . . 10  |-  ( ( F  Fn  ( Base `  S )  /\  U  C_  ( Base `  S
)  /\  ( a
( .s `  S
) c )  e.  U )  ->  ( F `  ( a
( .s `  S
) c ) )  e.  ( F " U ) )
4638, 40, 44, 45syl3anc 1326 . . . . . . . . 9  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  -> 
( F `  (
a ( .s `  S ) c ) )  e.  ( F
" U ) )
4737, 46eqeltrrd 2702 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  c  e.  U ) )  -> 
( a ( .s
`  T ) ( F `  c ) )  e.  ( F
" U ) )
4847anassrs 680 . . . . . . 7  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X
)  /\  a  e.  ( Base `  (Scalar `  T
) ) )  /\  c  e.  U )  ->  ( a ( .s
`  T ) ( F `  c ) )  e.  ( F
" U ) )
49 oveq2 6658 . . . . . . . 8  |-  ( ( F `  c )  =  b  ->  (
a ( .s `  T ) ( F `
 c ) )  =  ( a ( .s `  T ) b ) )
5049eleq1d 2686 . . . . . . 7  |-  ( ( F `  c )  =  b  ->  (
( a ( .s
`  T ) ( F `  c ) )  e.  ( F
" U )  <->  ( a
( .s `  T
) b )  e.  ( F " U
) ) )
5148, 50syl5ibcom 235 . . . . . 6  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X
)  /\  a  e.  ( Base `  (Scalar `  T
) ) )  /\  c  e.  U )  ->  ( ( F `  c )  =  b  ->  ( a ( .s `  T ) b )  e.  ( F " U ) ) )
5251rexlimdva 3031 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  a  e.  ( Base `  (Scalar `  T
) ) )  -> 
( E. c  e.  U  ( F `  c )  =  b  ->  ( a ( .s `  T ) b )  e.  ( F " U ) ) )
5321, 52sylbid 230 . . . 4  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  a  e.  ( Base `  (Scalar `  T
) ) )  -> 
( b  e.  ( F " U )  ->  ( a ( .s `  T ) b )  e.  ( F " U ) ) )
5453impr 649 . . 3  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e.  X )  /\  ( a  e.  (
Base `  (Scalar `  T
) )  /\  b  e.  ( F " U
) ) )  -> 
( a ( .s
`  T ) b )  e.  ( F
" U ) )
5554ralrimivva 2971 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  A. a  e.  ( Base `  (Scalar `  T ) ) A. b  e.  ( F " U ) ( a ( .s `  T
) b )  e.  ( F " U
) )
56 lmhmlmod2 19032 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  T  e.  LMod )
5756adantr 481 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  T  e.  LMod )
58 eqid 2622 . . . 4  |-  ( Base `  (Scalar `  T )
)  =  ( Base `  (Scalar `  T )
)
59 lmhmima.y . . . 4  |-  Y  =  ( LSubSp `  T )
6024, 58, 12, 35, 59islss4 18962 . . 3  |-  ( T  e.  LMod  ->  ( ( F " U )  e.  Y  <->  ( ( F " U )  e.  (SubGrp `  T )  /\  A. a  e.  (
Base `  (Scalar `  T
) ) A. b  e.  ( F " U
) ( a ( .s `  T ) b )  e.  ( F " U ) ) ) )
6157, 60syl 17 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  (
( F " U
)  e.  Y  <->  ( ( F " U )  e.  (SubGrp `  T )  /\  A. a  e.  (
Base `  (Scalar `  T
) ) A. b  e.  ( F " U
) ( a ( .s `  T ) b )  e.  ( F " U ) ) ) )
6210, 55, 61mpbir2and 957 1  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e.  X )  ->  ( F " U )  e.  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945  SubGrpcsubg 17588    GrpHom cghm 17657   LModclmod 18863   LSubSpclss 18932   LMHom clmhm 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lmhm 19022
This theorem is referenced by:  lmhmlsp  19049  lmhmrnlss  19050
  Copyright terms: Public domain W3C validator