Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssats Structured version   Visualization version   Unicode version

Theorem lssats 34299
Description: The lattice of subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. Hypothesis (shatomistici 29220 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssats.s  |-  S  =  ( LSubSp `  W )
lssats.n  |-  N  =  ( LSpan `  W )
lssats.a  |-  A  =  (LSAtoms `  W )
Assertion
Ref Expression
lssats  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( N `  U. { x  e.  A  |  x  C_  U }
) )
Distinct variable groups:    x, A    x, N    x, S    x, U
Allowed substitution hint:    W( x)

Proof of Theorem lssats
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . 5  |-  ( y  =  ( 0g `  W )  ->  (
y  e.  ( N `
 U. { x  e.  A  |  x  C_  U } )  <->  ( 0g `  W )  e.  ( N `  U. {
x  e.  A  |  x  C_  U } ) ) )
2 simplll 798 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  W  e.  LMod )
3 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  U  e.  S )
4 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  U )
5 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  W )  =  (
Base `  W )
6 lssats.s . . . . . . . . . . 11  |-  S  =  ( LSubSp `  W )
75, 6lssel 18938 . . . . . . . . . 10  |-  ( ( U  e.  S  /\  y  e.  U )  ->  y  e.  ( Base `  W ) )
83, 4, 7syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  ( Base `  W
) )
9 lssats.n . . . . . . . . . 10  |-  N  =  ( LSpan `  W )
105, 6, 9lspsncl 18977 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
) )  ->  ( N `  { y } )  e.  S
)
112, 8, 10syl2anc 693 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  e.  S
)
126, 9lspid 18982 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( N `  { y } )  e.  S
)  ->  ( N `  ( N `  {
y } ) )  =  ( N `  { y } ) )
132, 11, 12syl2anc 693 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  ( N `  { y } ) )  =  ( N `
 { y } ) )
14 lssats.a . . . . . . . . . . . . 13  |-  A  =  (LSAtoms `  W )
156, 14lsatlss 34283 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  A  C_  S )
1615adantr 481 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  A  C_  S )
17 rabss2 3685 . . . . . . . . . . 11  |-  ( A 
C_  S  ->  { x  e.  A  |  x  C_  U }  C_  { x  e.  S  |  x  C_  U } )
18 uniss 4458 . . . . . . . . . . 11  |-  ( { x  e.  A  |  x  C_  U }  C_  { x  e.  S  |  x  C_  U }  ->  U. { x  e.  A  |  x  C_  U }  C_ 
U. { x  e.  S  |  x  C_  U } )
1916, 17, 183syl 18 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  A  |  x  C_  U }  C_  U. { x  e.  S  |  x  C_  U }
)
20 unimax 4473 . . . . . . . . . . . 12  |-  ( U  e.  S  ->  U. {
x  e.  S  |  x  C_  U }  =  U )
215, 6lssss 18937 . . . . . . . . . . . 12  |-  ( U  e.  S  ->  U  C_  ( Base `  W
) )
2220, 21eqsstrd 3639 . . . . . . . . . . 11  |-  ( U  e.  S  ->  U. {
x  e.  S  |  x  C_  U }  C_  ( Base `  W )
)
2322adantl 482 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  S  |  x  C_  U }  C_  ( Base `  W )
)
2419, 23sstrd 3613 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  A  |  x  C_  U }  C_  ( Base `  W )
)
2524ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  U. {
x  e.  A  |  x  C_  U }  C_  ( Base `  W )
)
26 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  =/=  ( 0g `  W
) )
27 eqid 2622 . . . . . . . . . . . 12  |-  ( 0g
`  W )  =  ( 0g `  W
)
285, 9, 27, 14lsatlspsn2 34279 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
)  /\  y  =/=  ( 0g `  W ) )  ->  ( N `  { y } )  e.  A )
292, 8, 26, 28syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  e.  A
)
306, 9, 2, 3, 4lspsnel5a 18996 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  C_  U
)
31 sseq1 3626 . . . . . . . . . . 11  |-  ( x  =  ( N `  { y } )  ->  ( x  C_  U 
<->  ( N `  {
y } )  C_  U ) )
3231elrab 3363 . . . . . . . . . 10  |-  ( ( N `  { y } )  e.  {
x  e.  A  |  x  C_  U }  <->  ( ( N `  { y } )  e.  A  /\  ( N `  {
y } )  C_  U ) )
3329, 30, 32sylanbrc 698 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  e.  {
x  e.  A  |  x  C_  U } )
34 elssuni 4467 . . . . . . . . 9  |-  ( ( N `  { y } )  e.  {
x  e.  A  |  x  C_  U }  ->  ( N `  { y } )  C_  U. {
x  e.  A  |  x  C_  U } )
3533, 34syl 17 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  C_  U. {
x  e.  A  |  x  C_  U } )
365, 9lspss 18984 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U. { x  e.  A  |  x  C_  U }  C_  ( Base `  W
)  /\  ( N `  { y } ) 
C_  U. { x  e.  A  |  x  C_  U } )  ->  ( N `  ( N `  { y } ) )  C_  ( N `  U. { x  e.  A  |  x  C_  U } ) )
372, 25, 35, 36syl3anc 1326 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  ( N `  { y } ) )  C_  ( N `  U. { x  e.  A  |  x  C_  U } ) )
3813, 37eqsstr3d 3640 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  ( N `  { y } )  C_  ( N `  U. { x  e.  A  |  x  C_  U } ) )
395, 9lspsnid 18993 . . . . . . 7  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  W
) )  ->  y  e.  ( N `  {
y } ) )
402, 8, 39syl2anc 693 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  ( N `  {
y } ) )
4138, 40sseldd 3604 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  U  e.  S
)  /\  y  e.  U )  /\  y  =/=  ( 0g `  W
) )  ->  y  e.  ( N `  U. { x  e.  A  |  x  C_  U }
) )
42 simpll 790 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  W  e.  LMod )
435, 6, 9lspcl 18976 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U. { x  e.  A  |  x  C_  U }  C_  ( Base `  W
) )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S )
4424, 43syldan 487 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S )
4544adantr 481 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S
)
4627, 6lss0cl 18947 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( N `  U. { x  e.  A  |  x  C_  U } )  e.  S )  ->  ( 0g `  W )  e.  ( N `  U. { x  e.  A  |  x  C_  U }
) )
4742, 45, 46syl2anc 693 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  ( 0g `  W )  e.  ( N `  U. {
x  e.  A  |  x  C_  U } ) )
481, 41, 47pm2.61ne 2879 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  y  e.  U
)  ->  y  e.  ( N `  U. {
x  e.  A  |  x  C_  U } ) )
4948ex 450 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
y  e.  U  -> 
y  e.  ( N `
 U. { x  e.  A  |  x  C_  U } ) ) )
5049ssrdv 3609 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  ( N `  U. { x  e.  A  |  x  C_  U }
) )
51 simpl 473 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  W  e.  LMod )
525, 9lspss 18984 . . . 4  |-  ( ( W  e.  LMod  /\  U. { x  e.  S  |  x  C_  U }  C_  ( Base `  W
)  /\  U. { x  e.  A  |  x  C_  U }  C_  U. {
x  e.  S  |  x  C_  U } )  ->  ( N `  U. { x  e.  A  |  x  C_  U }
)  C_  ( N `  U. { x  e.  S  |  x  C_  U } ) )
5351, 23, 19, 52syl3anc 1326 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  C_  ( N `  U. {
x  e.  S  |  x  C_  U } ) )
5420adantl 482 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U. {
x  e.  S  |  x  C_  U }  =  U )
5554fveq2d 6195 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  S  |  x  C_  U } )  =  ( N `  U
) )
566, 9lspid 18982 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U )  =  U )
5755, 56eqtrd 2656 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  S  |  x  C_  U } )  =  U )
5853, 57sseqtrd 3641 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U. { x  e.  A  |  x  C_  U } )  C_  U )
5950, 58eqssd 3620 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( N `  U. { x  e.  A  |  x  C_  U }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    C_ wss 3574   {csn 4177   U.cuni 4436   ` cfv 5888   Basecbs 15857   0gc0g 16100   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971  LSAtomsclsa 34261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lsatoms 34263
This theorem is referenced by:  lpssat  34300  lssatle  34302  lssat  34303
  Copyright terms: Public domain W3C validator