MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matinvgcell Structured version   Visualization version   Unicode version

Theorem matinvgcell 20241
Description: Additive inversion in the matrix ring is cell-wise. (Contributed by AV, 17-Nov-2019.)
Hypotheses
Ref Expression
matplusgcell.a  |-  A  =  ( N Mat  R )
matplusgcell.b  |-  B  =  ( Base `  A
)
matinvgcell.v  |-  V  =  ( invg `  R )
matinvgcell.w  |-  W  =  ( invg `  A )
Assertion
Ref Expression
matinvgcell  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( I
( W `  X
) J )  =  ( V `  (
I X J ) ) )

Proof of Theorem matinvgcell
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matplusgcell.a . . . . . . . . . 10  |-  A  =  ( N Mat  R )
2 matplusgcell.b . . . . . . . . . 10  |-  B  =  ( Base `  A
)
31, 2matrcl 20218 . . . . . . . . 9  |-  ( X  e.  B  ->  ( N  e.  Fin  /\  R  e.  _V ) )
43simpld 475 . . . . . . . 8  |-  ( X  e.  B  ->  N  e.  Fin )
54adantl 482 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  N  e.  Fin )
6 simpl 473 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e.  Ring )
71matgrp 20236 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  A  e.  Grp )
85, 6, 7syl2anc 693 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  A  e.  Grp )
9 eqid 2622 . . . . . . 7  |-  ( 0g
`  A )  =  ( 0g `  A
)
102, 9grpidcl 17450 . . . . . 6  |-  ( A  e.  Grp  ->  ( 0g `  A )  e.  B )
118, 10syl 17 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( 0g `  A )  e.  B )
12 simpr 477 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  e.  B )
1311, 12jca 554 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( 0g `  A
)  e.  B  /\  X  e.  B )
)
14133adant3 1081 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( ( 0g `  A )  e.  B  /\  X  e.  B ) )
15 eqid 2622 . . . 4  |-  ( -g `  A )  =  (
-g `  A )
16 eqid 2622 . . . 4  |-  ( -g `  R )  =  (
-g `  R )
171, 2, 15, 16matsubgcell 20240 . . 3  |-  ( ( R  e.  Ring  /\  (
( 0g `  A
)  e.  B  /\  X  e.  B )  /\  ( I  e.  N  /\  J  e.  N
) )  ->  (
I ( ( 0g
`  A ) (
-g `  A ) X ) J )  =  ( ( I ( 0g `  A
) J ) (
-g `  R )
( I X J ) ) )
1814, 17syld3an2 1373 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( I
( ( 0g `  A ) ( -g `  A ) X ) J )  =  ( ( I ( 0g
`  A ) J ) ( -g `  R
) ( I X J ) ) )
19 matinvgcell.w . . . . . 6  |-  W  =  ( invg `  A )
202, 15, 19, 9grpinvval2 17498 . . . . 5  |-  ( ( A  e.  Grp  /\  X  e.  B )  ->  ( W `  X
)  =  ( ( 0g `  A ) ( -g `  A
) X ) )
218, 12, 20syl2anc 693 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( W `  X )  =  ( ( 0g
`  A ) (
-g `  A ) X ) )
22213adant3 1081 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( W `  X )  =  ( ( 0g `  A
) ( -g `  A
) X ) )
2322oveqd 6667 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( I
( W `  X
) J )  =  ( I ( ( 0g `  A ) ( -g `  A
) X ) J ) )
24 ringgrp 18552 . . . . 5  |-  ( R  e.  Ring  ->  R  e. 
Grp )
25243ad2ant1 1082 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  R  e.  Grp )
26 simp3 1063 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( I  e.  N  /\  J  e.  N ) )
272eleq2i 2693 . . . . . . . 8  |-  ( X  e.  B  <->  X  e.  ( Base `  A )
)
2827biimpi 206 . . . . . . 7  |-  ( X  e.  B  ->  X  e.  ( Base `  A
) )
29283ad2ant2 1083 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  X  e.  ( Base `  A )
)
30 df-3an 1039 . . . . . 6  |-  ( ( I  e.  N  /\  J  e.  N  /\  X  e.  ( Base `  A ) )  <->  ( (
I  e.  N  /\  J  e.  N )  /\  X  e.  ( Base `  A ) ) )
3126, 29, 30sylanbrc 698 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( I  e.  N  /\  J  e.  N  /\  X  e.  ( Base `  A
) ) )
32 eqid 2622 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
331, 32matecl 20231 . . . . 5  |-  ( ( I  e.  N  /\  J  e.  N  /\  X  e.  ( Base `  A ) )  -> 
( I X J )  e.  ( Base `  R ) )
3431, 33syl 17 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( I X J )  e.  (
Base `  R )
)
35 matinvgcell.v . . . . 5  |-  V  =  ( invg `  R )
36 eqid 2622 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
3732, 16, 35, 36grpinvval2 17498 . . . 4  |-  ( ( R  e.  Grp  /\  ( I X J )  e.  ( Base `  R ) )  -> 
( V `  (
I X J ) )  =  ( ( 0g `  R ) ( -g `  R
) ( I X J ) ) )
3825, 34, 37syl2anc 693 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( V `  ( I X J ) )  =  ( ( 0g `  R
) ( -g `  R
) ( I X J ) ) )
394anim1i 592 . . . . . . . . 9  |-  ( ( X  e.  B  /\  R  e.  Ring )  -> 
( N  e.  Fin  /\  R  e.  Ring )
)
4039ancoms 469 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( N  e.  Fin  /\  R  e.  Ring ) )
411, 36mat0op 20225 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( 0g `  A
)  =  ( x  e.  N ,  y  e.  N  |->  ( 0g
`  R ) ) )
4240, 41syl 17 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( 0g `  A )  =  ( x  e.  N ,  y  e.  N  |->  ( 0g `  R
) ) )
43423adant3 1081 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( 0g `  A )  =  ( x  e.  N , 
y  e.  N  |->  ( 0g `  R ) ) )
44 eqidd 2623 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  ( I  e.  N  /\  J  e.  N
) )  /\  (
x  =  I  /\  y  =  J )
)  ->  ( 0g `  R )  =  ( 0g `  R ) )
4526simpld 475 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  I  e.  N )
46 simp3r 1090 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  J  e.  N )
47 fvexd 6203 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( 0g `  R )  e.  _V )
4843, 44, 45, 46, 47ovmpt2d 6788 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( I
( 0g `  A
) J )  =  ( 0g `  R
) )
4948eqcomd 2628 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( 0g `  R )  =  ( I ( 0g `  A ) J ) )
5049oveq1d 6665 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( ( 0g `  R ) (
-g `  R )
( I X J ) )  =  ( ( I ( 0g
`  A ) J ) ( -g `  R
) ( I X J ) ) )
5138, 50eqtrd 2656 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( V `  ( I X J ) )  =  ( ( I ( 0g
`  A ) J ) ( -g `  R
) ( I X J ) ) )
5218, 23, 513eqtr4d 2666 1  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( I
( W `  X
) J )  =  ( V `  (
I X J ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   Basecbs 15857   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423   -gcsg 17424   Ringcrg 18547   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mat 20214
This theorem is referenced by:  cpmatinvcl  20522
  Copyright terms: Public domain W3C validator