MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptnn0fsuppr Structured version   Visualization version   Unicode version

Theorem mptnn0fsuppr 12799
Description: A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptnn0fsupp.0  |-  ( ph  ->  .0.  e.  V )
mptnn0fsupp.c  |-  ( (
ph  /\  k  e.  NN0 )  ->  C  e.  B )
mptnn0fsuppr.s  |-  ( ph  ->  ( k  e.  NN0  |->  C ) finSupp  .0.  )
Assertion
Ref Expression
mptnn0fsuppr  |-  ( ph  ->  E. s  e.  NN0  A. x  e.  NN0  (
s  <  x  ->  [_ x  /  k ]_ C  =  .0.  )
)
Distinct variable groups:    B, k    C, s, x    ph, k,
s, x    .0. , s, x
Allowed substitution hints:    B( x, s)    C( k)    V( x, k, s)    .0. ( k)

Proof of Theorem mptnn0fsuppr
StepHypRef Expression
1 mptnn0fsuppr.s . . 3  |-  ( ph  ->  ( k  e.  NN0  |->  C ) finSupp  .0.  )
2 fsuppimp 8281 . . . 4  |-  ( ( k  e.  NN0  |->  C ) finSupp  .0.  ->  ( Fun  (
k  e.  NN0  |->  C )  /\  ( ( k  e.  NN0  |->  C ) supp 
.0.  )  e.  Fin ) )
3 mptnn0fsupp.c . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN0 )  ->  C  e.  B )
43ralrimiva 2966 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  NN0  C  e.  B )
5 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  |->  C )  =  ( k  e. 
NN0  |->  C )
65fnmpt 6020 . . . . . . . . . . . . . 14  |-  ( A. k  e.  NN0  C  e.  B  ->  ( k  e.  NN0  |->  C )  Fn 
NN0 )
74, 6syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  NN0  |->  C )  Fn  NN0 )
8 nn0ex 11298 . . . . . . . . . . . . . 14  |-  NN0  e.  _V
98a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  NN0  e.  _V )
10 mptnn0fsupp.0 . . . . . . . . . . . . . 14  |-  ( ph  ->  .0.  e.  V )
11 elex 3212 . . . . . . . . . . . . . 14  |-  (  .0. 
e.  V  ->  .0.  e.  _V )
1210, 11syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  .0.  e.  _V )
137, 9, 123jca 1242 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( k  e. 
NN0  |->  C )  Fn 
NN0  /\  NN0  e.  _V  /\  .0.  e.  _V )
)
1413adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  ( (
k  e.  NN0  |->  C )  Fn  NN0  /\  NN0  e.  _V  /\  .0.  e.  _V ) )
15 suppvalfn 7302 . . . . . . . . . . 11  |-  ( ( ( k  e.  NN0  |->  C )  Fn  NN0  /\ 
NN0  e.  _V  /\  .0.  e.  _V )  ->  (
( k  e.  NN0  |->  C ) supp  .0.  )  =  { x  e.  NN0  |  ( ( k  e. 
NN0  |->  C ) `  x )  =/=  .0.  } )
1614, 15syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  ( (
k  e.  NN0  |->  C ) supp 
.0.  )  =  {
x  e.  NN0  | 
( ( k  e. 
NN0  |->  C ) `  x )  =/=  .0.  } )
17 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  Fun  ( k  e.  NN0  |->  C ) )  /\  x  e.  NN0 )  ->  x  e.  NN0 )
184adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  A. k  e.  NN0  C  e.  B
)
1918adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  Fun  ( k  e.  NN0  |->  C ) )  /\  x  e.  NN0 )  ->  A. k  e.  NN0  C  e.  B )
20 rspcsbela 4006 . . . . . . . . . . . . . 14  |-  ( ( x  e.  NN0  /\  A. k  e.  NN0  C  e.  B )  ->  [_ x  /  k ]_ C  e.  B )
2117, 19, 20syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  Fun  ( k  e.  NN0  |->  C ) )  /\  x  e.  NN0 )  ->  [_ x  /  k ]_ C  e.  B
)
225fvmpts 6285 . . . . . . . . . . . . 13  |-  ( ( x  e.  NN0  /\  [_ x  /  k ]_ C  e.  B )  ->  ( ( k  e. 
NN0  |->  C ) `  x )  =  [_ x  /  k ]_ C
)
2317, 21, 22syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  Fun  ( k  e.  NN0  |->  C ) )  /\  x  e.  NN0 )  -> 
( ( k  e. 
NN0  |->  C ) `  x )  =  [_ x  /  k ]_ C
)
2423neeq1d 2853 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Fun  ( k  e.  NN0  |->  C ) )  /\  x  e.  NN0 )  -> 
( ( ( k  e.  NN0  |->  C ) `
 x )  =/= 
.0. 
<-> 
[_ x  /  k ]_ C  =/=  .0.  ) )
2524rabbidva 3188 . . . . . . . . . 10  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  { x  e.  NN0  |  ( ( k  e.  NN0  |->  C ) `
 x )  =/= 
.0.  }  =  {
x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  } )
2616, 25eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  ( (
k  e.  NN0  |->  C ) supp 
.0.  )  =  {
x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  } )
2726eleq1d 2686 . . . . . . . 8  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  ( (
( k  e.  NN0  |->  C ) supp  .0.  )  e.  Fin  <->  { x  e.  NN0  | 
[_ x  /  k ]_ C  =/=  .0.  }  e.  Fin ) )
2827biimpd 219 . . . . . . 7  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  ( (
( k  e.  NN0  |->  C ) supp  .0.  )  e.  Fin  ->  { x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  }  e.  Fin ) )
2928expcom 451 . . . . . 6  |-  ( Fun  ( k  e.  NN0  |->  C )  ->  ( ph  ->  ( ( ( k  e.  NN0  |->  C ) supp 
.0.  )  e.  Fin  ->  { x  e.  NN0  | 
[_ x  /  k ]_ C  =/=  .0.  }  e.  Fin ) ) )
3029com23 86 . . . . 5  |-  ( Fun  ( k  e.  NN0  |->  C )  ->  (
( ( k  e. 
NN0  |->  C ) supp  .0.  )  e.  Fin  ->  ( ph  ->  { x  e. 
NN0  |  [_ x  / 
k ]_ C  =/=  .0.  }  e.  Fin ) ) )
3130imp 445 . . . 4  |-  ( ( Fun  ( k  e. 
NN0  |->  C )  /\  ( ( k  e. 
NN0  |->  C ) supp  .0.  )  e.  Fin )  ->  ( ph  ->  { x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  }  e.  Fin ) )
322, 31syl 17 . . 3  |-  ( ( k  e.  NN0  |->  C ) finSupp  .0.  ->  ( ph  ->  { x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  }  e.  Fin ) )
331, 32mpcom 38 . 2  |-  ( ph  ->  { x  e.  NN0  | 
[_ x  /  k ]_ C  =/=  .0.  }  e.  Fin )
34 rabssnn0fi 12785 . . 3  |-  ( { x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  }  e.  Fin  <->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  -.  [_ x  /  k ]_ C  =/=  .0.  ) )
35 nne 2798 . . . . . 6  |-  ( -. 
[_ x  /  k ]_ C  =/=  .0.  <->  [_ x  /  k ]_ C  =  .0.  )
3635imbi2i 326 . . . . 5  |-  ( ( s  <  x  ->  -.  [_ x  /  k ]_ C  =/=  .0.  ) 
<->  ( s  <  x  ->  [_ x  /  k ]_ C  =  .0.  ) )
3736ralbii 2980 . . . 4  |-  ( A. x  e.  NN0  ( s  <  x  ->  -.  [_ x  /  k ]_ C  =/=  .0.  )  <->  A. x  e.  NN0  ( s  < 
x  ->  [_ x  / 
k ]_ C  =  .0.  ) )
3837rexbii 3041 . . 3  |-  ( E. s  e.  NN0  A. x  e.  NN0  ( s  < 
x  ->  -.  [_ x  /  k ]_ C  =/=  .0.  )  <->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  [_ x  / 
k ]_ C  =  .0.  ) )
3934, 38bitri 264 . 2  |-  ( { x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  }  e.  Fin  <->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  [_ x  / 
k ]_ C  =  .0.  ) )
4033, 39sylib 208 1  |-  ( ph  ->  E. s  e.  NN0  A. x  e.  NN0  (
s  <  x  ->  [_ x  /  k ]_ C  =  .0.  )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   [_csb 3533   class class class wbr 4653    |-> cmpt 4729   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   supp csupp 7295   Fincfn 7955   finSupp cfsupp 8275    < clt 10074   NN0cn0 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  cpmidpmatlem3  20677
  Copyright terms: Public domain W3C validator