Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdrgacs Structured version   Visualization version   Unicode version

Theorem sdrgacs 37771
Description: Closure property of division subrings. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypothesis
Ref Expression
subrgacs.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
sdrgacs  |-  ( R  e.  DivRing  ->  (SubDRing `  R )  e.  (ACS `  B )
)

Proof of Theorem sdrgacs
Dummy variables  x  s  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . . 8  |-  ( invr `  R )  =  (
invr `  R )
2 eqid 2622 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
31, 2issdrg2 37768 . . . . . . 7  |-  ( s  e.  (SubDRing `  R
)  <->  ( R  e.  DivRing 
/\  s  e.  (SubRing `  R )  /\  A. x  e.  ( s  \  { ( 0g `  R ) } ) ( ( invr `  R
) `  x )  e.  s ) )
4 3anass 1042 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  s  e.  (SubRing `  R )  /\  A. x  e.  ( s  \  { ( 0g `  R ) } ) ( (
invr `  R ) `  x )  e.  s )  <->  ( R  e.  DivRing 
/\  ( s  e.  (SubRing `  R )  /\  A. x  e.  ( s  \  { ( 0g `  R ) } ) ( (
invr `  R ) `  x )  e.  s ) ) )
53, 4bitri 264 . . . . . 6  |-  ( s  e.  (SubDRing `  R
)  <->  ( R  e.  DivRing 
/\  ( s  e.  (SubRing `  R )  /\  A. x  e.  ( s  \  { ( 0g `  R ) } ) ( (
invr `  R ) `  x )  e.  s ) ) )
65baib 944 . . . . 5  |-  ( R  e.  DivRing  ->  ( s  e.  (SubDRing `  R )  <->  ( s  e.  (SubRing `  R
)  /\  A. x  e.  ( s  \  {
( 0g `  R
) } ) ( ( invr `  R
) `  x )  e.  s ) ) )
7 subrgacs.b . . . . . . . . . 10  |-  B  =  ( Base `  R
)
87subrgss 18781 . . . . . . . . 9  |-  ( s  e.  (SubRing `  R
)  ->  s  C_  B )
9 selpw 4165 . . . . . . . . 9  |-  ( s  e.  ~P B  <->  s  C_  B )
108, 9sylibr 224 . . . . . . . 8  |-  ( s  e.  (SubRing `  R
)  ->  s  e.  ~P B )
1110adantl 482 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  s  e.  (SubRing `  R )
)  ->  s  e.  ~P B )
12 iftrue 4092 . . . . . . . . . . . . . 14  |-  ( x  =  ( 0g `  R )  ->  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  =  x )
1312eleq1d 2686 . . . . . . . . . . . . 13  |-  ( x  =  ( 0g `  R )  ->  ( if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y  <->  x  e.  y ) )
1413biimprd 238 . . . . . . . . . . . 12  |-  ( x  =  ( 0g `  R )  ->  (
x  e.  y  ->  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y ) )
15 eldifsni 4320 . . . . . . . . . . . . . 14  |-  ( x  e.  ( y  \  { ( 0g `  R ) } )  ->  x  =/=  ( 0g `  R ) )
1615necon2bi 2824 . . . . . . . . . . . . 13  |-  ( x  =  ( 0g `  R )  ->  -.  x  e.  ( y  \  { ( 0g `  R ) } ) )
1716pm2.21d 118 . . . . . . . . . . . 12  |-  ( x  =  ( 0g `  R )  ->  (
x  e.  ( y 
\  { ( 0g
`  R ) } )  ->  ( ( invr `  R ) `  x )  e.  y ) )
1814, 172thd 255 . . . . . . . . . . 11  |-  ( x  =  ( 0g `  R )  ->  (
( x  e.  y  ->  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R ) `  x
) )  e.  y )  <->  ( x  e.  ( y  \  {
( 0g `  R
) } )  -> 
( ( invr `  R
) `  x )  e.  y ) ) )
19 eldifsn 4317 . . . . . . . . . . . . 13  |-  ( x  e.  ( y  \  { ( 0g `  R ) } )  <-> 
( x  e.  y  /\  x  =/=  ( 0g `  R ) ) )
2019rbaibr 946 . . . . . . . . . . . 12  |-  ( x  =/=  ( 0g `  R )  ->  (
x  e.  y  <->  x  e.  ( y  \  {
( 0g `  R
) } ) ) )
21 ifnefalse 4098 . . . . . . . . . . . . 13  |-  ( x  =/=  ( 0g `  R )  ->  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  =  ( ( invr `  R
) `  x )
)
2221eleq1d 2686 . . . . . . . . . . . 12  |-  ( x  =/=  ( 0g `  R )  ->  ( if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y  <->  ( ( invr `  R ) `  x )  e.  y ) )
2320, 22imbi12d 334 . . . . . . . . . . 11  |-  ( x  =/=  ( 0g `  R )  ->  (
( x  e.  y  ->  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R ) `  x
) )  e.  y )  <->  ( x  e.  ( y  \  {
( 0g `  R
) } )  -> 
( ( invr `  R
) `  x )  e.  y ) ) )
2418, 23pm2.61ine 2877 . . . . . . . . . 10  |-  ( ( x  e.  y  ->  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y )  <-> 
( x  e.  ( y  \  { ( 0g `  R ) } )  ->  (
( invr `  R ) `  x )  e.  y ) )
2524ralbii2 2978 . . . . . . . . 9  |-  ( A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y  <->  A. x  e.  ( y  \  { ( 0g `  R ) } ) ( (
invr `  R ) `  x )  e.  y )
26 difeq1 3721 . . . . . . . . . 10  |-  ( y  =  s  ->  (
y  \  { ( 0g `  R ) } )  =  ( s 
\  { ( 0g
`  R ) } ) )
27 eleq2 2690 . . . . . . . . . 10  |-  ( y  =  s  ->  (
( ( invr `  R
) `  x )  e.  y  <->  ( ( invr `  R ) `  x
)  e.  s ) )
2826, 27raleqbidv 3152 . . . . . . . . 9  |-  ( y  =  s  ->  ( A. x  e.  (
y  \  { ( 0g `  R ) } ) ( ( invr `  R ) `  x
)  e.  y  <->  A. x  e.  ( s  \  {
( 0g `  R
) } ) ( ( invr `  R
) `  x )  e.  s ) )
2925, 28syl5bb 272 . . . . . . . 8  |-  ( y  =  s  ->  ( A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y  <->  A. x  e.  ( s  \  {
( 0g `  R
) } ) ( ( invr `  R
) `  x )  e.  s ) )
3029elrab3 3364 . . . . . . 7  |-  ( s  e.  ~P B  -> 
( s  e.  {
y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R
) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y }  <->  A. x  e.  (
s  \  { ( 0g `  R ) } ) ( ( invr `  R ) `  x
)  e.  s ) )
3111, 30syl 17 . . . . . 6  |-  ( ( R  e.  DivRing  /\  s  e.  (SubRing `  R )
)  ->  ( s  e.  { y  e.  ~P B  |  A. x  e.  y  if (
x  =  ( 0g
`  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y }  <->  A. x  e.  ( s  \  {
( 0g `  R
) } ) ( ( invr `  R
) `  x )  e.  s ) )
3231pm5.32da 673 . . . . 5  |-  ( R  e.  DivRing  ->  ( ( s  e.  (SubRing `  R
)  /\  s  e.  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R
) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y } )  <->  ( s  e.  (SubRing `  R )  /\  A. x  e.  ( s  \  { ( 0g `  R ) } ) ( (
invr `  R ) `  x )  e.  s ) ) )
336, 32bitr4d 271 . . . 4  |-  ( R  e.  DivRing  ->  ( s  e.  (SubDRing `  R )  <->  ( s  e.  (SubRing `  R
)  /\  s  e.  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R
) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y } ) ) )
34 elin 3796 . . . 4  |-  ( s  e.  ( (SubRing `  R
)  i^i  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y } )  <->  ( s  e.  (SubRing `  R )  /\  s  e.  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y } ) )
3533, 34syl6bbr 278 . . 3  |-  ( R  e.  DivRing  ->  ( s  e.  (SubDRing `  R )  <->  s  e.  ( (SubRing `  R
)  i^i  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y } ) ) )
3635eqrdv 2620 . 2  |-  ( R  e.  DivRing  ->  (SubDRing `  R )  =  ( (SubRing `  R
)  i^i  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y } ) )
37 fvex 6201 . . . . 5  |-  ( Base `  R )  e.  _V
387, 37eqeltri 2697 . . . 4  |-  B  e. 
_V
39 mreacs 16319 . . . 4  |-  ( B  e.  _V  ->  (ACS `  B )  e.  (Moore `  ~P B ) )
4038, 39mp1i 13 . . 3  |-  ( R  e.  DivRing  ->  (ACS `  B
)  e.  (Moore `  ~P B ) )
41 drngring 18754 . . . 4  |-  ( R  e.  DivRing  ->  R  e.  Ring )
427subrgacs 37770 . . . 4  |-  ( R  e.  Ring  ->  (SubRing `  R
)  e.  (ACS `  B ) )
4341, 42syl 17 . . 3  |-  ( R  e.  DivRing  ->  (SubRing `  R )  e.  (ACS `  B )
)
44 simplr 792 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  x  e.  B )  /\  x  =  ( 0g `  R ) )  ->  x  e.  B
)
45 df-ne 2795 . . . . . . 7  |-  ( x  =/=  ( 0g `  R )  <->  -.  x  =  ( 0g `  R ) )
467, 2, 1drnginvrcl 18764 . . . . . . . 8  |-  ( ( R  e.  DivRing  /\  x  e.  B  /\  x  =/=  ( 0g `  R
) )  ->  (
( invr `  R ) `  x )  e.  B
)
47463expa 1265 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  x  e.  B )  /\  x  =/=  ( 0g `  R ) )  ->  ( ( invr `  R ) `  x
)  e.  B )
4845, 47sylan2br 493 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  x  e.  B )  /\  -.  x  =  ( 0g `  R ) )  ->  ( ( invr `  R ) `  x )  e.  B
)
4944, 48ifclda 4120 . . . . 5  |-  ( ( R  e.  DivRing  /\  x  e.  B )  ->  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  B )
5049ralrimiva 2966 . . . 4  |-  ( R  e.  DivRing  ->  A. x  e.  B  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  B )
51 acsfn1 16322 . . . 4  |-  ( ( B  e.  _V  /\  A. x  e.  B  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  B )  ->  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y }  e.  (ACS `  B
) )
5238, 50, 51sylancr 695 . . 3  |-  ( R  e.  DivRing  ->  { y  e. 
~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y }  e.  (ACS
`  B ) )
53 mreincl 16259 . . 3  |-  ( ( (ACS `  B )  e.  (Moore `  ~P B )  /\  (SubRing `  R
)  e.  (ACS `  B )  /\  {
y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R
) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y }  e.  (ACS `  B
) )  ->  (
(SubRing `  R )  i^i 
{ y  e.  ~P B  |  A. x  e.  y  if (
x  =  ( 0g
`  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y } )  e.  (ACS `  B )
)
5440, 43, 52, 53syl3anc 1326 . 2  |-  ( R  e.  DivRing  ->  ( (SubRing `  R
)  i^i  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y } )  e.  (ACS `  B )
)
5536, 54eqeltrd 2701 1  |-  ( R  e.  DivRing  ->  (SubDRing `  R )  e.  (ACS `  B )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   ifcif 4086   ~Pcpw 4158   {csn 4177   ` cfv 5888   Basecbs 15857   0gc0g 16100  Moorecmre 16242  ACScacs 16245   Ringcrg 18547   invrcinvr 18671   DivRingcdr 18747  SubRingcsubrg 18776  SubDRingcsdrg 37765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-subrg 18778  df-sdrg 37766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator