Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubff Structured version   Visualization version   Unicode version

Theorem msubff 31427
Description: A substitution is a function from  E to  E. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff.v  |-  V  =  (mVR `  T )
msubff.r  |-  R  =  (mREx `  T )
msubff.s  |-  S  =  (mSubst `  T )
msubff.e  |-  E  =  (mEx `  T )
Assertion
Ref Expression
msubff  |-  ( T  e.  W  ->  S : ( R  ^pm  V ) --> ( E  ^m  E ) )

Proof of Theorem msubff
Dummy variables  e 
f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 7198 . . . . . . . . 9  |-  ( e  e.  ( (mTC `  T )  X.  R
)  ->  ( 1st `  e )  e.  (mTC
`  T ) )
2 eqid 2622 . . . . . . . . . 10  |-  (mTC `  T )  =  (mTC
`  T )
3 msubff.e . . . . . . . . . 10  |-  E  =  (mEx `  T )
4 msubff.r . . . . . . . . . 10  |-  R  =  (mREx `  T )
52, 3, 4mexval 31399 . . . . . . . . 9  |-  E  =  ( (mTC `  T
)  X.  R )
61, 5eleq2s 2719 . . . . . . . 8  |-  ( e  e.  E  ->  ( 1st `  e )  e.  (mTC `  T )
)
76adantl 482 . . . . . . 7  |-  ( ( ( T  e.  W  /\  f  e.  ( R  ^pm  V ) )  /\  e  e.  E
)  ->  ( 1st `  e )  e.  (mTC
`  T ) )
8 msubff.v . . . . . . . . . . 11  |-  V  =  (mVR `  T )
9 eqid 2622 . . . . . . . . . . 11  |-  (mRSubst `  T
)  =  (mRSubst `  T
)
108, 4, 9mrsubff 31409 . . . . . . . . . 10  |-  ( T  e.  W  ->  (mRSubst `  T ) : ( R  ^pm  V ) --> ( R  ^m  R ) )
1110ffvelrnda 6359 . . . . . . . . 9  |-  ( ( T  e.  W  /\  f  e.  ( R  ^pm  V ) )  -> 
( (mRSubst `  T
) `  f )  e.  ( R  ^m  R
) )
12 elmapi 7879 . . . . . . . . 9  |-  ( ( (mRSubst `  T ) `  f )  e.  ( R  ^m  R )  ->  ( (mRSubst `  T
) `  f ) : R --> R )
1311, 12syl 17 . . . . . . . 8  |-  ( ( T  e.  W  /\  f  e.  ( R  ^pm  V ) )  -> 
( (mRSubst `  T
) `  f ) : R --> R )
14 xp2nd 7199 . . . . . . . . 9  |-  ( e  e.  ( (mTC `  T )  X.  R
)  ->  ( 2nd `  e )  e.  R
)
1514, 5eleq2s 2719 . . . . . . . 8  |-  ( e  e.  E  ->  ( 2nd `  e )  e.  R )
16 ffvelrn 6357 . . . . . . . 8  |-  ( ( ( (mRSubst `  T
) `  f ) : R --> R  /\  ( 2nd `  e )  e.  R )  ->  (
( (mRSubst `  T
) `  f ) `  ( 2nd `  e
) )  e.  R
)
1713, 15, 16syl2an 494 . . . . . . 7  |-  ( ( ( T  e.  W  /\  f  e.  ( R  ^pm  V ) )  /\  e  e.  E
)  ->  ( (
(mRSubst `  T ) `  f ) `  ( 2nd `  e ) )  e.  R )
18 opelxp 5146 . . . . . . 7  |-  ( <.
( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>.  e.  ( (mTC `  T )  X.  R
)  <->  ( ( 1st `  e )  e.  (mTC
`  T )  /\  ( ( (mRSubst `  T
) `  f ) `  ( 2nd `  e
) )  e.  R
) )
197, 17, 18sylanbrc 698 . . . . . 6  |-  ( ( ( T  e.  W  /\  f  e.  ( R  ^pm  V ) )  /\  e  e.  E
)  ->  <. ( 1st `  e ) ,  ( ( (mRSubst `  T
) `  f ) `  ( 2nd `  e
) ) >.  e.  ( (mTC `  T )  X.  R ) )
2019, 5syl6eleqr 2712 . . . . 5  |-  ( ( ( T  e.  W  /\  f  e.  ( R  ^pm  V ) )  /\  e  e.  E
)  ->  <. ( 1st `  e ) ,  ( ( (mRSubst `  T
) `  f ) `  ( 2nd `  e
) ) >.  e.  E
)
21 eqid 2622 . . . . 5  |-  ( e  e.  E  |->  <. ( 1st `  e ) ,  ( ( (mRSubst `  T
) `  f ) `  ( 2nd `  e
) ) >. )  =  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. )
2220, 21fmptd 6385 . . . 4  |-  ( ( T  e.  W  /\  f  e.  ( R  ^pm  V ) )  -> 
( e  e.  E  |-> 
<. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. ) : E --> E )
23 fvex 6201 . . . . . 6  |-  (mEx `  T )  e.  _V
243, 23eqeltri 2697 . . . . 5  |-  E  e. 
_V
2524, 24elmap 7886 . . . 4  |-  ( ( e  e.  E  |->  <.
( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. )  e.  ( E  ^m  E )  <->  ( e  e.  E  |->  <. ( 1st `  e ) ,  ( ( (mRSubst `  T
) `  f ) `  ( 2nd `  e
) ) >. ) : E --> E )
2622, 25sylibr 224 . . 3  |-  ( ( T  e.  W  /\  f  e.  ( R  ^pm  V ) )  -> 
( e  e.  E  |-> 
<. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. )  e.  ( E  ^m  E ) )
27 eqid 2622 . . 3  |-  ( f  e.  ( R  ^pm  V )  |->  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. ) )  =  ( f  e.  ( R 
^pm  V )  |->  ( e  e.  E  |->  <.
( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. ) )
2826, 27fmptd 6385 . 2  |-  ( T  e.  W  ->  (
f  e.  ( R 
^pm  V )  |->  ( e  e.  E  |->  <.
( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. ) ) : ( R  ^pm  V ) --> ( E  ^m  E ) )
29 msubff.s . . . 4  |-  S  =  (mSubst `  T )
308, 4, 29, 3, 9msubffval 31420 . . 3  |-  ( T  e.  W  ->  S  =  ( f  e.  ( R  ^pm  V
)  |->  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. ) ) )
3130feq1d 6030 . 2  |-  ( T  e.  W  ->  ( S : ( R  ^pm  V ) --> ( E  ^m  E )  <->  ( f  e.  ( R  ^pm  V
)  |->  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. ) ) : ( R  ^pm  V ) --> ( E  ^m  E ) ) )
3228, 31mpbird 247 1  |-  ( T  e.  W  ->  S : ( R  ^pm  V ) --> ( E  ^m  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    |-> cmpt 4729    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857    ^pm cpm 7858  mVRcmvar 31358  mTCcmtc 31361  mRExcmrex 31363  mExcmex 31364  mRSubstcmrsub 31367  mSubstcmsub 31368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-frmd 17386  df-mrex 31383  df-mex 31384  df-mrsub 31387  df-msub 31388
This theorem is referenced by:  msubf  31429  msubff1  31453  mclsind  31467
  Copyright terms: Public domain W3C validator