Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubco Structured version   Visualization version   Unicode version

Theorem msubco 31428
Description: The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
msubco.s  |-  S  =  (mSubst `  T )
Assertion
Ref Expression
msubco  |-  ( ( F  e.  ran  S  /\  G  e.  ran  S )  ->  ( F  o.  G )  e.  ran  S )

Proof of Theorem msubco
Dummy variables  f 
g  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  (mEx `  T )  =  (mEx
`  T )
2 eqid 2622 . . . . 5  |-  (mRSubst `  T
)  =  (mRSubst `  T
)
3 msubco.s . . . . 5  |-  S  =  (mSubst `  T )
41, 2, 3elmsubrn 31425 . . . 4  |-  ran  S  =  ran  ( f  e. 
ran  (mRSubst `  T )  |->  ( x  e.  (mEx
`  T )  |->  <.
( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )
)
54eleq2i 2693 . . 3  |-  ( F  e.  ran  S  <->  F  e.  ran  ( f  e.  ran  (mRSubst `  T )  |->  ( x  e.  (mEx `  T )  |->  <. ( 1st `  x ) ,  ( f `  ( 2nd `  x ) )
>. ) ) )
6 eqid 2622 . . . 4  |-  ( f  e.  ran  (mRSubst `  T
)  |->  ( x  e.  (mEx `  T )  |-> 
<. ( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )
)  =  ( f  e.  ran  (mRSubst `  T
)  |->  ( x  e.  (mEx `  T )  |-> 
<. ( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )
)
7 fvex 6201 . . . . 5  |-  (mEx `  T )  e.  _V
87mptex 6486 . . . 4  |-  ( x  e.  (mEx `  T
)  |->  <. ( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )  e.  _V
96, 8elrnmpti 5376 . . 3  |-  ( F  e.  ran  ( f  e.  ran  (mRSubst `  T
)  |->  ( x  e.  (mEx `  T )  |-> 
<. ( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )
)  <->  E. f  e.  ran  (mRSubst `  T ) F  =  ( x  e.  (mEx `  T )  |-> 
<. ( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )
)
105, 9bitri 264 . 2  |-  ( F  e.  ran  S  <->  E. f  e.  ran  (mRSubst `  T
) F  =  ( x  e.  (mEx `  T )  |->  <. ( 1st `  x ) ,  ( f `  ( 2nd `  x ) )
>. ) )
111, 2, 3elmsubrn 31425 . . . 4  |-  ran  S  =  ran  ( g  e. 
ran  (mRSubst `  T )  |->  ( y  e.  (mEx
`  T )  |->  <.
( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >. )
)
1211eleq2i 2693 . . 3  |-  ( G  e.  ran  S  <->  G  e.  ran  ( g  e.  ran  (mRSubst `  T )  |->  ( y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( g `  ( 2nd `  y ) )
>. ) ) )
13 eqid 2622 . . . 4  |-  ( g  e.  ran  (mRSubst `  T
)  |->  ( y  e.  (mEx `  T )  |-> 
<. ( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >. )
)  =  ( g  e.  ran  (mRSubst `  T
)  |->  ( y  e.  (mEx `  T )  |-> 
<. ( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >. )
)
147mptex 6486 . . . 4  |-  ( y  e.  (mEx `  T
)  |->  <. ( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >. )  e.  _V
1513, 14elrnmpti 5376 . . 3  |-  ( G  e.  ran  ( g  e.  ran  (mRSubst `  T
)  |->  ( y  e.  (mEx `  T )  |-> 
<. ( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >. )
)  <->  E. g  e.  ran  (mRSubst `  T ) G  =  ( y  e.  (mEx `  T )  |-> 
<. ( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >. )
)
1612, 15bitri 264 . 2  |-  ( G  e.  ran  S  <->  E. g  e.  ran  (mRSubst `  T
) G  =  ( y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( g `  ( 2nd `  y ) )
>. ) )
17 reeanv 3107 . . 3  |-  ( E. f  e.  ran  (mRSubst `  T ) E. g  e.  ran  (mRSubst `  T
) ( F  =  ( x  e.  (mEx
`  T )  |->  <.
( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )  /\  G  =  (
y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( g `  ( 2nd `  y ) )
>. ) )  <->  ( E. f  e.  ran  (mRSubst `  T
) F  =  ( x  e.  (mEx `  T )  |->  <. ( 1st `  x ) ,  ( f `  ( 2nd `  x ) )
>. )  /\  E. g  e.  ran  (mRSubst `  T
) G  =  ( y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( g `  ( 2nd `  y ) )
>. ) ) )
18 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  /\  y  e.  (mEx `  T )
)  ->  y  e.  (mEx `  T ) )
19 eqid 2622 . . . . . . . . . . . . 13  |-  (mTC `  T )  =  (mTC
`  T )
20 eqid 2622 . . . . . . . . . . . . 13  |-  (mREx `  T )  =  (mREx `  T )
2119, 1, 20mexval 31399 . . . . . . . . . . . 12  |-  (mEx `  T )  =  ( (mTC `  T )  X.  (mREx `  T )
)
2218, 21syl6eleq 2711 . . . . . . . . . . 11  |-  ( ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  /\  y  e.  (mEx `  T )
)  ->  y  e.  ( (mTC `  T )  X.  (mREx `  T )
) )
23 xp1st 7198 . . . . . . . . . . 11  |-  ( y  e.  ( (mTC `  T )  X.  (mREx `  T ) )  -> 
( 1st `  y
)  e.  (mTC `  T ) )
2422, 23syl 17 . . . . . . . . . 10  |-  ( ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  /\  y  e.  (mEx `  T )
)  ->  ( 1st `  y )  e.  (mTC
`  T ) )
252, 20mrsubf 31414 . . . . . . . . . . . 12  |-  ( g  e.  ran  (mRSubst `  T
)  ->  g :
(mREx `  T ) --> (mREx `  T ) )
2625ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  /\  y  e.  (mEx `  T )
)  ->  g :
(mREx `  T ) --> (mREx `  T ) )
27 xp2nd 7199 . . . . . . . . . . . 12  |-  ( y  e.  ( (mTC `  T )  X.  (mREx `  T ) )  -> 
( 2nd `  y
)  e.  (mREx `  T ) )
2822, 27syl 17 . . . . . . . . . . 11  |-  ( ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  /\  y  e.  (mEx `  T )
)  ->  ( 2nd `  y )  e.  (mREx `  T ) )
2926, 28ffvelrnd 6360 . . . . . . . . . 10  |-  ( ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  /\  y  e.  (mEx `  T )
)  ->  ( g `  ( 2nd `  y
) )  e.  (mREx `  T ) )
30 opelxpi 5148 . . . . . . . . . 10  |-  ( ( ( 1st `  y
)  e.  (mTC `  T )  /\  (
g `  ( 2nd `  y ) )  e.  (mREx `  T )
)  ->  <. ( 1st `  y ) ,  ( g `  ( 2nd `  y ) ) >.  e.  ( (mTC `  T
)  X.  (mREx `  T ) ) )
3124, 29, 30syl2anc 693 . . . . . . . . 9  |-  ( ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  /\  y  e.  (mEx `  T )
)  ->  <. ( 1st `  y ) ,  ( g `  ( 2nd `  y ) ) >.  e.  ( (mTC `  T
)  X.  (mREx `  T ) ) )
3231, 21syl6eleqr 2712 . . . . . . . 8  |-  ( ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  /\  y  e.  (mEx `  T )
)  ->  <. ( 1st `  y ) ,  ( g `  ( 2nd `  y ) ) >.  e.  (mEx `  T )
)
33 eqidd 2623 . . . . . . . 8  |-  ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  ->  (
y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( g `  ( 2nd `  y ) )
>. )  =  (
y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( g `  ( 2nd `  y ) )
>. ) )
34 eqidd 2623 . . . . . . . 8  |-  ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  ->  (
x  e.  (mEx `  T )  |->  <. ( 1st `  x ) ,  ( f `  ( 2nd `  x ) )
>. )  =  (
x  e.  (mEx `  T )  |->  <. ( 1st `  x ) ,  ( f `  ( 2nd `  x ) )
>. ) )
35 fvex 6201 . . . . . . . . . 10  |-  ( 1st `  y )  e.  _V
36 fvex 6201 . . . . . . . . . 10  |-  ( g `
 ( 2nd `  y
) )  e.  _V
3735, 36op1std 7178 . . . . . . . . 9  |-  ( x  =  <. ( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >.  ->  ( 1st `  x )  =  ( 1st `  y
) )
3835, 36op2ndd 7179 . . . . . . . . . 10  |-  ( x  =  <. ( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >.  ->  ( 2nd `  x )  =  ( g `  ( 2nd `  y ) ) )
3938fveq2d 6195 . . . . . . . . 9  |-  ( x  =  <. ( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >.  ->  (
f `  ( 2nd `  x ) )  =  ( f `  (
g `  ( 2nd `  y ) ) ) )
4037, 39opeq12d 4410 . . . . . . . 8  |-  ( x  =  <. ( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >.  ->  <. ( 1st `  x ) ,  ( f `  ( 2nd `  x ) )
>.  =  <. ( 1st `  y ) ,  ( f `  ( g `
 ( 2nd `  y
) ) ) >.
)
4132, 33, 34, 40fmptco 6396 . . . . . . 7  |-  ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  ->  (
( x  e.  (mEx
`  T )  |->  <.
( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )  o.  ( y  e.  (mEx
`  T )  |->  <.
( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >. )
)  =  ( y  e.  (mEx `  T
)  |->  <. ( 1st `  y
) ,  ( f `
 ( g `  ( 2nd `  y ) ) ) >. )
)
42 fvco3 6275 . . . . . . . . . 10  |-  ( ( g : (mREx `  T ) --> (mREx `  T )  /\  ( 2nd `  y )  e.  (mREx `  T )
)  ->  ( (
f  o.  g ) `
 ( 2nd `  y
) )  =  ( f `  ( g `
 ( 2nd `  y
) ) ) )
4326, 28, 42syl2anc 693 . . . . . . . . 9  |-  ( ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  /\  y  e.  (mEx `  T )
)  ->  ( (
f  o.  g ) `
 ( 2nd `  y
) )  =  ( f `  ( g `
 ( 2nd `  y
) ) ) )
4443opeq2d 4409 . . . . . . . 8  |-  ( ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  /\  y  e.  (mEx `  T )
)  ->  <. ( 1st `  y ) ,  ( ( f  o.  g
) `  ( 2nd `  y ) ) >.  =  <. ( 1st `  y
) ,  ( f `
 ( g `  ( 2nd `  y ) ) ) >. )
4544mpteq2dva 4744 . . . . . . 7  |-  ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  ->  (
y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( ( f  o.  g ) `  ( 2nd `  y ) )
>. )  =  (
y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( f `  (
g `  ( 2nd `  y ) ) )
>. ) )
4641, 45eqtr4d 2659 . . . . . 6  |-  ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  ->  (
( x  e.  (mEx
`  T )  |->  <.
( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )  o.  ( y  e.  (mEx
`  T )  |->  <.
( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >. )
)  =  ( y  e.  (mEx `  T
)  |->  <. ( 1st `  y
) ,  ( ( f  o.  g ) `
 ( 2nd `  y
) ) >. )
)
472mrsubco 31418 . . . . . . . 8  |-  ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  ->  (
f  o.  g )  e.  ran  (mRSubst `  T
) )
487mptex 6486 . . . . . . . 8  |-  ( y  e.  (mEx `  T
)  |->  <. ( 1st `  y
) ,  ( ( f  o.  g ) `
 ( 2nd `  y
) ) >. )  e.  _V
49 eqid 2622 . . . . . . . . 9  |-  ( h  e.  ran  (mRSubst `  T
)  |->  ( y  e.  (mEx `  T )  |-> 
<. ( 1st `  y
) ,  ( h `
 ( 2nd `  y
) ) >. )
)  =  ( h  e.  ran  (mRSubst `  T
)  |->  ( y  e.  (mEx `  T )  |-> 
<. ( 1st `  y
) ,  ( h `
 ( 2nd `  y
) ) >. )
)
50 fveq1 6190 . . . . . . . . . . 11  |-  ( h  =  ( f  o.  g )  ->  (
h `  ( 2nd `  y ) )  =  ( ( f  o.  g ) `  ( 2nd `  y ) ) )
5150opeq2d 4409 . . . . . . . . . 10  |-  ( h  =  ( f  o.  g )  ->  <. ( 1st `  y ) ,  ( h `  ( 2nd `  y ) )
>.  =  <. ( 1st `  y ) ,  ( ( f  o.  g
) `  ( 2nd `  y ) ) >.
)
5251mpteq2dv 4745 . . . . . . . . 9  |-  ( h  =  ( f  o.  g )  ->  (
y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( h `  ( 2nd `  y ) )
>. )  =  (
y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( ( f  o.  g ) `  ( 2nd `  y ) )
>. ) )
5349, 52elrnmpt1s 5373 . . . . . . . 8  |-  ( ( ( f  o.  g
)  e.  ran  (mRSubst `  T )  /\  (
y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( ( f  o.  g ) `  ( 2nd `  y ) )
>. )  e.  _V )  ->  ( y  e.  (mEx `  T )  |-> 
<. ( 1st `  y
) ,  ( ( f  o.  g ) `
 ( 2nd `  y
) ) >. )  e.  ran  ( h  e. 
ran  (mRSubst `  T )  |->  ( y  e.  (mEx
`  T )  |->  <.
( 1st `  y
) ,  ( h `
 ( 2nd `  y
) ) >. )
) )
5447, 48, 53sylancl 694 . . . . . . 7  |-  ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  ->  (
y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( ( f  o.  g ) `  ( 2nd `  y ) )
>. )  e.  ran  ( h  e.  ran  (mRSubst `  T )  |->  ( y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( h `  ( 2nd `  y ) )
>. ) ) )
551, 2, 3elmsubrn 31425 . . . . . . 7  |-  ran  S  =  ran  ( h  e. 
ran  (mRSubst `  T )  |->  ( y  e.  (mEx
`  T )  |->  <.
( 1st `  y
) ,  ( h `
 ( 2nd `  y
) ) >. )
)
5654, 55syl6eleqr 2712 . . . . . 6  |-  ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  ->  (
y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( ( f  o.  g ) `  ( 2nd `  y ) )
>. )  e.  ran  S )
5746, 56eqeltrd 2701 . . . . 5  |-  ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  ->  (
( x  e.  (mEx
`  T )  |->  <.
( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )  o.  ( y  e.  (mEx
`  T )  |->  <.
( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >. )
)  e.  ran  S
)
58 coeq1 5279 . . . . . . 7  |-  ( F  =  ( x  e.  (mEx `  T )  |-> 
<. ( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )  ->  ( F  o.  G
)  =  ( ( x  e.  (mEx `  T )  |->  <. ( 1st `  x ) ,  ( f `  ( 2nd `  x ) )
>. )  o.  G
) )
59 coeq2 5280 . . . . . . 7  |-  ( G  =  ( y  e.  (mEx `  T )  |-> 
<. ( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >. )  ->  ( ( x  e.  (mEx `  T )  |-> 
<. ( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )  o.  G )  =  ( ( x  e.  (mEx
`  T )  |->  <.
( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )  o.  ( y  e.  (mEx
`  T )  |->  <.
( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >. )
) )
6058, 59sylan9eq 2676 . . . . . 6  |-  ( ( F  =  ( x  e.  (mEx `  T
)  |->  <. ( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )  /\  G  =  (
y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( g `  ( 2nd `  y ) )
>. ) )  ->  ( F  o.  G )  =  ( ( x  e.  (mEx `  T
)  |->  <. ( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )  o.  ( y  e.  (mEx
`  T )  |->  <.
( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >. )
) )
6160eleq1d 2686 . . . . 5  |-  ( ( F  =  ( x  e.  (mEx `  T
)  |->  <. ( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )  /\  G  =  (
y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( g `  ( 2nd `  y ) )
>. ) )  ->  (
( F  o.  G
)  e.  ran  S  <->  ( ( x  e.  (mEx
`  T )  |->  <.
( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )  o.  ( y  e.  (mEx
`  T )  |->  <.
( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >. )
)  e.  ran  S
) )
6257, 61syl5ibrcom 237 . . . 4  |-  ( ( f  e.  ran  (mRSubst `  T )  /\  g  e.  ran  (mRSubst `  T
) )  ->  (
( F  =  ( x  e.  (mEx `  T )  |->  <. ( 1st `  x ) ,  ( f `  ( 2nd `  x ) )
>. )  /\  G  =  ( y  e.  (mEx
`  T )  |->  <.
( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >. )
)  ->  ( F  o.  G )  e.  ran  S ) )
6362rexlimivv 3036 . . 3  |-  ( E. f  e.  ran  (mRSubst `  T ) E. g  e.  ran  (mRSubst `  T
) ( F  =  ( x  e.  (mEx
`  T )  |->  <.
( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )  /\  G  =  (
y  e.  (mEx `  T )  |->  <. ( 1st `  y ) ,  ( g `  ( 2nd `  y ) )
>. ) )  ->  ( F  o.  G )  e.  ran  S )
6417, 63sylbir 225 . 2  |-  ( ( E. f  e.  ran  (mRSubst `  T ) F  =  ( x  e.  (mEx `  T )  |-> 
<. ( 1st `  x
) ,  ( f `
 ( 2nd `  x
) ) >. )  /\  E. g  e.  ran  (mRSubst `  T ) G  =  ( y  e.  (mEx `  T )  |-> 
<. ( 1st `  y
) ,  ( g `
 ( 2nd `  y
) ) >. )
)  ->  ( F  o.  G )  e.  ran  S )
6510, 16, 64syl2anb 496 1  |-  ( ( F  e.  ran  S  /\  G  e.  ran  S )  ->  ( F  o.  G )  e.  ran  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200   <.cop 4183    |-> cmpt 4729    X. cxp 5112   ran crn 5115    o. ccom 5118   -->wf 5884   ` cfv 5888   1stc1st 7166   2ndc2nd 7167  mTCcmtc 31361  mRExcmrex 31363  mExcmex 31364  mRSubstcmrsub 31367  mSubstcmsub 31368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-frmd 17386  df-vrmd 17387  df-mrex 31383  df-mex 31384  df-mrsub 31387  df-msub 31388
This theorem is referenced by:  mclsppslem  31480
  Copyright terms: Public domain W3C validator