MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nb3grprlem1 Structured version   Visualization version   Unicode version

Theorem nb3grprlem1 26282
Description: Lemma 1 for nb3grpr 26284. (Contributed by Alexander van der Vekens, 15-Oct-2017.) (Revised by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
nb3grpr.v  |-  V  =  (Vtx `  G )
nb3grpr.e  |-  E  =  (Edg `  G )
nb3grpr.g  |-  ( ph  ->  G  e. USGraph  )
nb3grpr.t  |-  ( ph  ->  V  =  { A ,  B ,  C }
)
nb3grpr.s  |-  ( ph  ->  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
) )
Assertion
Ref Expression
nb3grprlem1  |-  ( ph  ->  ( ( G NeighbVtx  A )  =  { B ,  C }  <->  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E )
) )

Proof of Theorem nb3grprlem1
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 nb3grpr.s . . . . . . 7  |-  ( ph  ->  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
) )
2 prid1g 4295 . . . . . . . 8  |-  ( B  e.  Y  ->  B  e.  { B ,  C } )
323ad2ant2 1083 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  B  e.  { B ,  C } )
41, 3syl 17 . . . . . 6  |-  ( ph  ->  B  e.  { B ,  C } )
54adantr 481 . . . . 5  |-  ( (
ph  /\  ( G NeighbVtx  A )  =  { B ,  C } )  ->  B  e.  { B ,  C } )
6 eleq2 2690 . . . . . . 7  |-  ( { B ,  C }  =  ( G NeighbVtx  A )  ->  ( B  e. 
{ B ,  C } 
<->  B  e.  ( G NeighbVtx  A ) ) )
76eqcoms 2630 . . . . . 6  |-  ( ( G NeighbVtx  A )  =  { B ,  C }  ->  ( B  e.  { B ,  C }  <->  B  e.  ( G NeighbVtx  A ) ) )
87adantl 482 . . . . 5  |-  ( (
ph  /\  ( G NeighbVtx  A )  =  { B ,  C } )  -> 
( B  e.  { B ,  C }  <->  B  e.  ( G NeighbVtx  A ) ) )
95, 8mpbid 222 . . . 4  |-  ( (
ph  /\  ( G NeighbVtx  A )  =  { B ,  C } )  ->  B  e.  ( G NeighbVtx  A ) )
10 nb3grpr.g . . . . . 6  |-  ( ph  ->  G  e. USGraph  )
11 nb3grpr.e . . . . . . . 8  |-  E  =  (Edg `  G )
1211nbusgreledg 26249 . . . . . . 7  |-  ( G  e. USGraph  ->  ( B  e.  ( G NeighbVtx  A )  <->  { B ,  A }  e.  E ) )
13 prcom 4267 . . . . . . . . 9  |-  { B ,  A }  =  { A ,  B }
1413a1i 11 . . . . . . . 8  |-  ( G  e. USGraph  ->  { B ,  A }  =  { A ,  B }
)
1514eleq1d 2686 . . . . . . 7  |-  ( G  e. USGraph  ->  ( { B ,  A }  e.  E  <->  { A ,  B }  e.  E ) )
1612, 15bitrd 268 . . . . . 6  |-  ( G  e. USGraph  ->  ( B  e.  ( G NeighbVtx  A )  <->  { A ,  B }  e.  E ) )
1710, 16syl 17 . . . . 5  |-  ( ph  ->  ( B  e.  ( G NeighbVtx  A )  <->  { A ,  B }  e.  E
) )
1817adantr 481 . . . 4  |-  ( (
ph  /\  ( G NeighbVtx  A )  =  { B ,  C } )  -> 
( B  e.  ( G NeighbVtx  A )  <->  { A ,  B }  e.  E
) )
199, 18mpbid 222 . . 3  |-  ( (
ph  /\  ( G NeighbVtx  A )  =  { B ,  C } )  ->  { A ,  B }  e.  E )
20 prid2g 4296 . . . . . . . 8  |-  ( C  e.  Z  ->  C  e.  { B ,  C } )
21203ad2ant3 1084 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  C  e.  { B ,  C } )
221, 21syl 17 . . . . . 6  |-  ( ph  ->  C  e.  { B ,  C } )
2322adantr 481 . . . . 5  |-  ( (
ph  /\  ( G NeighbVtx  A )  =  { B ,  C } )  ->  C  e.  { B ,  C } )
24 eleq2 2690 . . . . . . 7  |-  ( { B ,  C }  =  ( G NeighbVtx  A )  ->  ( C  e. 
{ B ,  C } 
<->  C  e.  ( G NeighbVtx  A ) ) )
2524eqcoms 2630 . . . . . 6  |-  ( ( G NeighbVtx  A )  =  { B ,  C }  ->  ( C  e.  { B ,  C }  <->  C  e.  ( G NeighbVtx  A ) ) )
2625adantl 482 . . . . 5  |-  ( (
ph  /\  ( G NeighbVtx  A )  =  { B ,  C } )  -> 
( C  e.  { B ,  C }  <->  C  e.  ( G NeighbVtx  A ) ) )
2723, 26mpbid 222 . . . 4  |-  ( (
ph  /\  ( G NeighbVtx  A )  =  { B ,  C } )  ->  C  e.  ( G NeighbVtx  A ) )
2811nbusgreledg 26249 . . . . . . 7  |-  ( G  e. USGraph  ->  ( C  e.  ( G NeighbVtx  A )  <->  { C ,  A }  e.  E ) )
29 prcom 4267 . . . . . . . . 9  |-  { C ,  A }  =  { A ,  C }
3029a1i 11 . . . . . . . 8  |-  ( G  e. USGraph  ->  { C ,  A }  =  { A ,  C }
)
3130eleq1d 2686 . . . . . . 7  |-  ( G  e. USGraph  ->  ( { C ,  A }  e.  E  <->  { A ,  C }  e.  E ) )
3228, 31bitrd 268 . . . . . 6  |-  ( G  e. USGraph  ->  ( C  e.  ( G NeighbVtx  A )  <->  { A ,  C }  e.  E ) )
3310, 32syl 17 . . . . 5  |-  ( ph  ->  ( C  e.  ( G NeighbVtx  A )  <->  { A ,  C }  e.  E
) )
3433adantr 481 . . . 4  |-  ( (
ph  /\  ( G NeighbVtx  A )  =  { B ,  C } )  -> 
( C  e.  ( G NeighbVtx  A )  <->  { A ,  C }  e.  E
) )
3527, 34mpbid 222 . . 3  |-  ( (
ph  /\  ( G NeighbVtx  A )  =  { B ,  C } )  ->  { A ,  C }  e.  E )
3619, 35jca 554 . 2  |-  ( (
ph  /\  ( G NeighbVtx  A )  =  { B ,  C } )  -> 
( { A ,  B }  e.  E  /\  { A ,  C }  e.  E )
)
37 nb3grpr.v . . . . . 6  |-  V  =  (Vtx `  G )
3837, 11nbusgr 26245 . . . . 5  |-  ( G  e. USGraph  ->  ( G NeighbVtx  A )  =  { v  e.  V  |  { A ,  v }  e.  E } )
3910, 38syl 17 . . . 4  |-  ( ph  ->  ( G NeighbVtx  A )  =  { v  e.  V  |  { A ,  v }  e.  E }
)
4039adantr 481 . . 3  |-  ( (
ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  ( G NeighbVtx  A )  =  {
v  e.  V  |  { A ,  v }  e.  E } )
41 nb3grpr.t . . . . . . . . . 10  |-  ( ph  ->  V  =  { A ,  B ,  C }
)
42 eleq2 2690 . . . . . . . . . 10  |-  ( V  =  { A ,  B ,  C }  ->  ( v  e.  V  <->  v  e.  { A ,  B ,  C }
) )
4341, 42syl 17 . . . . . . . . 9  |-  ( ph  ->  ( v  e.  V  <->  v  e.  { A ,  B ,  C }
) )
4443adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  (
v  e.  V  <->  v  e.  { A ,  B ,  C } ) )
45 vex 3203 . . . . . . . . . . 11  |-  v  e. 
_V
4645eltp 4230 . . . . . . . . . 10  |-  ( v  e.  { A ,  B ,  C }  <->  ( v  =  A  \/  v  =  B  \/  v  =  C )
)
4711usgredgne 26098 . . . . . . . . . . . . . . . 16  |-  ( ( G  e. USGraph  /\  { A ,  v }  e.  E )  ->  A  =/=  v )
48 df-ne 2795 . . . . . . . . . . . . . . . . 17  |-  ( A  =/=  v  <->  -.  A  =  v )
49 pm2.24 121 . . . . . . . . . . . . . . . . . . 19  |-  ( A  =  v  ->  ( -.  A  =  v  ->  ( v  =  B  \/  v  =  C ) ) )
5049eqcoms 2630 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  A  ->  ( -.  A  =  v  ->  ( v  =  B  \/  v  =  C ) ) )
5150com12 32 . . . . . . . . . . . . . . . . 17  |-  ( -.  A  =  v  -> 
( v  =  A  ->  ( v  =  B  \/  v  =  C ) ) )
5248, 51sylbi 207 . . . . . . . . . . . . . . . 16  |-  ( A  =/=  v  ->  (
v  =  A  -> 
( v  =  B  \/  v  =  C ) ) )
5347, 52syl 17 . . . . . . . . . . . . . . 15  |-  ( ( G  e. USGraph  /\  { A ,  v }  e.  E )  ->  (
v  =  A  -> 
( v  =  B  \/  v  =  C ) ) )
5453ex 450 . . . . . . . . . . . . . 14  |-  ( G  e. USGraph  ->  ( { A ,  v }  e.  E  ->  ( v  =  A  ->  ( v  =  B  \/  v  =  C ) ) ) )
5510, 54syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( { A , 
v }  e.  E  ->  ( v  =  A  ->  ( v  =  B  \/  v  =  C ) ) ) )
5655adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  ( { A ,  v }  e.  E  ->  (
v  =  A  -> 
( v  =  B  \/  v  =  C ) ) ) )
5756com3r 87 . . . . . . . . . . 11  |-  ( v  =  A  ->  (
( ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  ( { A ,  v }  e.  E  ->  (
v  =  B  \/  v  =  C )
) ) )
58 orc 400 . . . . . . . . . . . 12  |-  ( v  =  B  ->  (
v  =  B  \/  v  =  C )
)
59582a1d 26 . . . . . . . . . . 11  |-  ( v  =  B  ->  (
( ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  ( { A ,  v }  e.  E  ->  (
v  =  B  \/  v  =  C )
) ) )
60 olc 399 . . . . . . . . . . . 12  |-  ( v  =  C  ->  (
v  =  B  \/  v  =  C )
)
61602a1d 26 . . . . . . . . . . 11  |-  ( v  =  C  ->  (
( ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  ( { A ,  v }  e.  E  ->  (
v  =  B  \/  v  =  C )
) ) )
6257, 59, 613jaoi 1391 . . . . . . . . . 10  |-  ( ( v  =  A  \/  v  =  B  \/  v  =  C )  ->  ( ( ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E ) )  -> 
( { A , 
v }  e.  E  ->  ( v  =  B  \/  v  =  C ) ) ) )
6346, 62sylbi 207 . . . . . . . . 9  |-  ( v  e.  { A ,  B ,  C }  ->  ( ( ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E ) )  -> 
( { A , 
v }  e.  E  ->  ( v  =  B  \/  v  =  C ) ) ) )
6463com12 32 . . . . . . . 8  |-  ( (
ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  (
v  e.  { A ,  B ,  C }  ->  ( { A , 
v }  e.  E  ->  ( v  =  B  \/  v  =  C ) ) ) )
6544, 64sylbid 230 . . . . . . 7  |-  ( (
ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  (
v  e.  V  -> 
( { A , 
v }  e.  E  ->  ( v  =  B  \/  v  =  C ) ) ) )
6665impd 447 . . . . . 6  |-  ( (
ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  (
( v  e.  V  /\  { A ,  v }  e.  E )  ->  ( v  =  B  \/  v  =  C ) ) )
67 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  B  =  B
68673mix2i 1234 . . . . . . . . . . . . . . . . 17  |-  ( B  =  A  \/  B  =  B  \/  B  =  C )
691simp2d 1074 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  B  e.  Y )
70 eltpg 4227 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  Y  ->  ( B  e.  { A ,  B ,  C }  <->  ( B  =  A  \/  B  =  B  \/  B  =  C )
) )
7169, 70syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( B  e.  { A ,  B ,  C }  <->  ( B  =  A  \/  B  =  B  \/  B  =  C ) ) )
7268, 71mpbiri 248 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  { A ,  B ,  C }
)
7372adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  v  =  B )  ->  B  e.  { A ,  B ,  C } )
74 eleq1 2689 . . . . . . . . . . . . . . . . 17  |-  ( v  =  B  ->  (
v  e.  { A ,  B ,  C }  <->  B  e.  { A ,  B ,  C }
) )
7574bicomd 213 . . . . . . . . . . . . . . . 16  |-  ( v  =  B  ->  ( B  e.  { A ,  B ,  C }  <->  v  e.  { A ,  B ,  C }
) )
7675adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  v  =  B )  ->  ( B  e.  { A ,  B ,  C }  <->  v  e.  { A ,  B ,  C }
) )
7773, 76mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  =  B )  ->  v  e.  { A ,  B ,  C } )
7842bicomd 213 . . . . . . . . . . . . . . . 16  |-  ( V  =  { A ,  B ,  C }  ->  ( v  e.  { A ,  B ,  C }  <->  v  e.  V
) )
7941, 78syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( v  e.  { A ,  B ,  C }  <->  v  e.  V
) )
8079adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  =  B )  ->  (
v  e.  { A ,  B ,  C }  <->  v  e.  V ) )
8177, 80mpbid 222 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  =  B )  ->  v  e.  V )
8281ex 450 . . . . . . . . . . . 12  |-  ( ph  ->  ( v  =  B  ->  v  e.  V
) )
8382adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  (
v  =  B  -> 
v  e.  V ) )
8483impcom 446 . . . . . . . . . 10  |-  ( ( v  =  B  /\  ( ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) ) )  -> 
v  e.  V )
85 preq2 4269 . . . . . . . . . . . . . . 15  |-  ( B  =  v  ->  { A ,  B }  =  { A ,  v }
)
8685eleq1d 2686 . . . . . . . . . . . . . 14  |-  ( B  =  v  ->  ( { A ,  B }  e.  E  <->  { A ,  v }  e.  E ) )
8786eqcoms 2630 . . . . . . . . . . . . 13  |-  ( v  =  B  ->  ( { A ,  B }  e.  E  <->  { A ,  v }  e.  E ) )
8887biimpcd 239 . . . . . . . . . . . 12  |-  ( { A ,  B }  e.  E  ->  ( v  =  B  ->  { A ,  v }  e.  E ) )
8988ad2antrl 764 . . . . . . . . . . 11  |-  ( (
ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  (
v  =  B  ->  { A ,  v }  e.  E ) )
9089impcom 446 . . . . . . . . . 10  |-  ( ( v  =  B  /\  ( ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) ) )  ->  { A ,  v }  e.  E )
9184, 90jca 554 . . . . . . . . 9  |-  ( ( v  =  B  /\  ( ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) ) )  -> 
( v  e.  V  /\  { A ,  v }  e.  E ) )
9291ex 450 . . . . . . . 8  |-  ( v  =  B  ->  (
( ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  (
v  e.  V  /\  { A ,  v }  e.  E ) ) )
93 tpid3g 4305 . . . . . . . . . . . . . . . . . 18  |-  ( C  e.  Z  ->  C  e.  { A ,  B ,  C } )
94933ad2ant3 1084 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  C  e.  { A ,  B ,  C }
)
951, 94syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  e.  { A ,  B ,  C }
)
9695adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  v  =  C )  ->  C  e.  { A ,  B ,  C } )
97 eleq1 2689 . . . . . . . . . . . . . . . . 17  |-  ( v  =  C  ->  (
v  e.  { A ,  B ,  C }  <->  C  e.  { A ,  B ,  C }
) )
9897bicomd 213 . . . . . . . . . . . . . . . 16  |-  ( v  =  C  ->  ( C  e.  { A ,  B ,  C }  <->  v  e.  { A ,  B ,  C }
) )
9998adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  v  =  C )  ->  ( C  e.  { A ,  B ,  C }  <->  v  e.  { A ,  B ,  C }
) )
10096, 99mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  =  C )  ->  v  e.  { A ,  B ,  C } )
10179adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  =  C )  ->  (
v  e.  { A ,  B ,  C }  <->  v  e.  V ) )
102100, 101mpbid 222 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  =  C )  ->  v  e.  V )
103102ex 450 . . . . . . . . . . . 12  |-  ( ph  ->  ( v  =  C  ->  v  e.  V
) )
104103adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  (
v  =  C  -> 
v  e.  V ) )
105104impcom 446 . . . . . . . . . 10  |-  ( ( v  =  C  /\  ( ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) ) )  -> 
v  e.  V )
106 preq2 4269 . . . . . . . . . . . . . . 15  |-  ( C  =  v  ->  { A ,  C }  =  { A ,  v }
)
107106eleq1d 2686 . . . . . . . . . . . . . 14  |-  ( C  =  v  ->  ( { A ,  C }  e.  E  <->  { A ,  v }  e.  E ) )
108107eqcoms 2630 . . . . . . . . . . . . 13  |-  ( v  =  C  ->  ( { A ,  C }  e.  E  <->  { A ,  v }  e.  E ) )
109108biimpcd 239 . . . . . . . . . . . 12  |-  ( { A ,  C }  e.  E  ->  ( v  =  C  ->  { A ,  v }  e.  E ) )
110109ad2antll 765 . . . . . . . . . . 11  |-  ( (
ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  (
v  =  C  ->  { A ,  v }  e.  E ) )
111110impcom 446 . . . . . . . . . 10  |-  ( ( v  =  C  /\  ( ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) ) )  ->  { A ,  v }  e.  E )
112105, 111jca 554 . . . . . . . . 9  |-  ( ( v  =  C  /\  ( ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) ) )  -> 
( v  e.  V  /\  { A ,  v }  e.  E ) )
113112ex 450 . . . . . . . 8  |-  ( v  =  C  ->  (
( ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  (
v  e.  V  /\  { A ,  v }  e.  E ) ) )
11492, 113jaoi 394 . . . . . . 7  |-  ( ( v  =  B  \/  v  =  C )  ->  ( ( ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E ) )  -> 
( v  e.  V  /\  { A ,  v }  e.  E ) ) )
115114com12 32 . . . . . 6  |-  ( (
ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  (
( v  =  B  \/  v  =  C )  ->  ( v  e.  V  /\  { A ,  v }  e.  E ) ) )
11666, 115impbid 202 . . . . 5  |-  ( (
ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  (
( v  e.  V  /\  { A ,  v }  e.  E )  <-> 
( v  =  B  \/  v  =  C ) ) )
117116abbidv 2741 . . . 4  |-  ( (
ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  { v  |  ( v  e.  V  /\  { A ,  v }  e.  E ) }  =  { v  |  ( v  =  B  \/  v  =  C ) } )
118 df-rab 2921 . . . 4  |-  { v  e.  V  |  { A ,  v }  e.  E }  =  {
v  |  ( v  e.  V  /\  { A ,  v }  e.  E ) }
119 dfpr2 4195 . . . 4  |-  { B ,  C }  =  {
v  |  ( v  =  B  \/  v  =  C ) }
120117, 118, 1193eqtr4g 2681 . . 3  |-  ( (
ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  { v  e.  V  |  { A ,  v }  e.  E }  =  { B ,  C }
)
12140, 120eqtrd 2656 . 2  |-  ( (
ph  /\  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E
) )  ->  ( G NeighbVtx  A )  =  { B ,  C }
)
12236, 121impbida 877 1  |-  ( ph  ->  ( ( G NeighbVtx  A )  =  { B ,  C }  <->  ( { A ,  B }  e.  E  /\  { A ,  C }  e.  E )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   {crab 2916   {cpr 4179   {ctp 4181   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   NeighbVtx cnbgr 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977  df-umgr 25978  df-usgr 26046  df-nbgr 26228
This theorem is referenced by:  nb3grpr  26284  nb3grpr2  26285  nb3gr2nb  26286
  Copyright terms: Public domain W3C validator