Proof of Theorem nbusgrvtxm1
| Step | Hyp | Ref
| Expression |
| 1 | | ax-1 6 |
. . 3
  NeighbVtx      NeighbVtx
    |
| 2 | 1 | 2a1d 26 |
. 2
  NeighbVtx    FinUSGraph 
     NeighbVtx             NeighbVtx
      |
| 3 | | simpr 477 |
. . . . . . . 8
   NeighbVtx  
FinUSGraph    FinUSGraph    |
| 4 | 3 | adantr 481 |
. . . . . . 7
    NeighbVtx
  FinUSGraph   
  
FinUSGraph    |
| 5 | | simprl 794 |
. . . . . . 7
    NeighbVtx
  FinUSGraph   
    |
| 6 | | simpr 477 |
. . . . . . . 8
     |
| 7 | 6 | adantl 482 |
. . . . . . 7
    NeighbVtx
  FinUSGraph   
    |
| 8 | | df-nel 2898 |
. . . . . . . . . 10
  NeighbVtx 
 NeighbVtx    |
| 9 | 8 | biimpri 218 |
. . . . . . . . 9
  NeighbVtx   NeighbVtx
   |
| 10 | 9 | adantr 481 |
. . . . . . . 8
   NeighbVtx  
FinUSGraph    NeighbVtx    |
| 11 | 10 | adantr 481 |
. . . . . . 7
    NeighbVtx
  FinUSGraph   
   NeighbVtx
   |
| 12 | | hashnbusgrnn0.v |
. . . . . . . 8
Vtx   |
| 13 | 12 | nbfusgrlevtxm2 26280 |
. . . . . . 7
   FinUSGraph  
 NeighbVtx
       NeighbVtx  
        |
| 14 | 4, 5, 7, 11, 13 | syl13anc 1328 |
. . . . . 6
    NeighbVtx
  FinUSGraph   
      NeighbVtx  
        |
| 15 | | breq1 4656 |
. . . . . . . . 9
     NeighbVtx              NeighbVtx
 
     
               |
| 16 | 15 | adantl 482 |
. . . . . . . 8
     NeighbVtx
  FinUSGraph   
      NeighbVtx               NeighbVtx
 
     
               |
| 17 | 12 | fusgrvtxfi 26211 |
. . . . . . . . . . . 12
 FinUSGraph   |
| 18 | | hashcl 13147 |
. . . . . . . . . . . 12
       |
| 19 | | nn0re 11301 |
. . . . . . . . . . . . 13
    
      |
| 20 | | 1red 10055 |
. . . . . . . . . . . . . . 15
    
  |
| 21 | | 2re 11090 |
. . . . . . . . . . . . . . . 16
 |
| 22 | 21 | a1i 11 |
. . . . . . . . . . . . . . 15
    
  |
| 23 | | id 22 |
. . . . . . . . . . . . . . 15
    
      |
| 24 | | 1lt2 11194 |
. . . . . . . . . . . . . . . 16
 |
| 25 | 24 | a1i 11 |
. . . . . . . . . . . . . . 15
    
  |
| 26 | 20, 22, 23, 25 | ltsub2dd 10640 |
. . . . . . . . . . . . . 14
    
              |
| 27 | 23, 22 | resubcld 10458 |
. . . . . . . . . . . . . . 15
    
        |
| 28 | | peano2rem 10348 |
. . . . . . . . . . . . . . 15
    
        |
| 29 | 27, 28 | ltnled 10184 |
. . . . . . . . . . . . . 14
    
                            |
| 30 | 26, 29 | mpbid 222 |
. . . . . . . . . . . . 13
    
              |
| 31 | 19, 30 | syl 17 |
. . . . . . . . . . . 12
    
              |
| 32 | 17, 18, 31 | 3syl 18 |
. . . . . . . . . . 11
 FinUSGraph
              |
| 33 | 32 | pm2.21d 118 |
. . . . . . . . . 10
 FinUSGraph               NeighbVtx     |
| 34 | 33 | adantr 481 |
. . . . . . . . 9
 
FinUSGraph              

NeighbVtx     |
| 35 | 34 | ad3antlr 767 |
. . . . . . . 8
     NeighbVtx
  FinUSGraph   
      NeighbVtx                        NeighbVtx     |
| 36 | 16, 35 | sylbid 230 |
. . . . . . 7
     NeighbVtx
  FinUSGraph   
      NeighbVtx               NeighbVtx
 
       NeighbVtx
    |
| 37 | 36 | ex 450 |
. . . . . 6
    NeighbVtx
  FinUSGraph   
       NeighbVtx              NeighbVtx
 
       NeighbVtx
     |
| 38 | 14, 37 | mpid 44 |
. . . . 5
    NeighbVtx
  FinUSGraph   
       NeighbVtx          NeighbVtx     |
| 39 | 38 | ex 450 |
. . . 4
   NeighbVtx  
FinUSGraph           NeighbVtx          NeighbVtx      |
| 40 | 39 | com23 86 |
. . 3
   NeighbVtx  
FinUSGraph        NeighbVtx             NeighbVtx
     |
| 41 | 40 | ex 450 |
. 2
  NeighbVtx    FinUSGraph       NeighbVtx             NeighbVtx
      |
| 42 | 2, 41 | pm2.61i 176 |
1
 
FinUSGraph       NeighbVtx             NeighbVtx
     |