MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem2 Structured version   Visualization version   Unicode version

Theorem hsmexlem2 9249
Description: Lemma for hsmex 9254. Bound the order type of a union of sets of ordinals, each of limited order type. Vaguely reminiscent of unictb 9397 but use of order types allows to canonically choose the sub-bijections, removing the choice requirement. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
hsmexlem.f  |-  F  = OrdIso
(  _E  ,  B
)
hsmexlem.g  |-  G  = OrdIso
(  _E  ,  U_ a  e.  A  B
)
Assertion
Ref Expression
hsmexlem2  |-  ( ( A  e.  V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  dom  G  e.  (har `  ~P ( A  X.  C
) ) )
Distinct variable groups:    A, a    C, a
Allowed substitution hints:    B( a)    F( a)    G( a)    V( a)

Proof of Theorem hsmexlem2
Dummy variables  b 
c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4168 . . . . . 6  |-  ( B  e.  ~P On  ->  B 
C_  On )
21adantr 481 . . . . 5  |-  ( ( B  e.  ~P On  /\ 
dom  F  e.  C
)  ->  B  C_  On )
32ralimi 2952 . . . 4  |-  ( A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
)  ->  A. a  e.  A  B  C_  On )
4 iunss 4561 . . . 4  |-  ( U_ a  e.  A  B  C_  On  <->  A. a  e.  A  B  C_  On )
53, 4sylibr 224 . . 3  |-  ( A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
)  ->  U_ a  e.  A  B  C_  On )
653ad2ant3 1084 . 2  |-  ( ( A  e.  V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  U_ a  e.  A  B  C_  On )
7 xpexg 6960 . . . 4  |-  ( ( A  e.  V  /\  C  e.  On )  ->  ( A  X.  C
)  e.  _V )
873adant3 1081 . . 3  |-  ( ( A  e.  V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  ( A  X.  C )  e. 
_V )
9 nfv 1843 . . . . . . . . 9  |-  F/ a  C  e.  On
10 nfra1 2941 . . . . . . . . 9  |-  F/ a A. a  e.  A  ( B  e.  ~P On  /\  dom  F  e.  C )
119, 10nfan 1828 . . . . . . . 8  |-  F/ a ( C  e.  On  /\ 
A. a  e.  A  ( B  e.  ~P On  /\  dom  F  e.  C ) )
12 rsp 2929 . . . . . . . . 9  |-  ( A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
)  ->  ( a  e.  A  ->  ( B  e.  ~P On  /\  dom  F  e.  C ) ) )
13 onelss 5766 . . . . . . . . . . . . . 14  |-  ( C  e.  On  ->  ( dom  F  e.  C  ->  dom  F  C_  C )
)
1413imp 445 . . . . . . . . . . . . 13  |-  ( ( C  e.  On  /\  dom  F  e.  C )  ->  dom  F  C_  C
)
1514adantrl 752 . . . . . . . . . . . 12  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C ) )  ->  dom  F  C_  C )
16153adant3 1081 . . . . . . . . . . 11  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C )  /\  b  e.  B )  ->  dom  F 
C_  C )
17 hsmexlem.f . . . . . . . . . . . . . . . . . . 19  |-  F  = OrdIso
(  _E  ,  B
)
1817oismo 8445 . . . . . . . . . . . . . . . . . 18  |-  ( B 
C_  On  ->  ( Smo 
F  /\  ran  F  =  B ) )
191, 18syl 17 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  ~P On  ->  ( Smo  F  /\  ran  F  =  B ) )
2019ad2antrl 764 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C ) )  -> 
( Smo  F  /\  ran  F  =  B ) )
2120simprd 479 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C ) )  ->  ran  F  =  B )
2217oif 8435 . . . . . . . . . . . . . . 15  |-  F : dom  F --> B
2321, 22jctil 560 . . . . . . . . . . . . . 14  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C ) )  -> 
( F : dom  F --> B  /\  ran  F  =  B ) )
24 dffo2 6119 . . . . . . . . . . . . . 14  |-  ( F : dom  F -onto-> B  <->  ( F : dom  F --> B  /\  ran  F  =  B ) )
2523, 24sylibr 224 . . . . . . . . . . . . 13  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C ) )  ->  F : dom  F -onto-> B
)
26 dffo3 6374 . . . . . . . . . . . . . 14  |-  ( F : dom  F -onto-> B  <->  ( F : dom  F --> B  /\  A. b  e.  B  E. e  e. 
dom  F  b  =  ( F `  e ) ) )
2726simprbi 480 . . . . . . . . . . . . 13  |-  ( F : dom  F -onto-> B  ->  A. b  e.  B  E. e  e.  dom  F  b  =  ( F `
 e ) )
28 rsp 2929 . . . . . . . . . . . . 13  |-  ( A. b  e.  B  E. e  e.  dom  F  b  =  ( F `  e )  ->  (
b  e.  B  ->  E. e  e.  dom  F  b  =  ( F `
 e ) ) )
2925, 27, 283syl 18 . . . . . . . . . . . 12  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C ) )  -> 
( b  e.  B  ->  E. e  e.  dom  F  b  =  ( F `
 e ) ) )
30293impia 1261 . . . . . . . . . . 11  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C )  /\  b  e.  B )  ->  E. e  e.  dom  F  b  =  ( F `  e
) )
31 ssrexv 3667 . . . . . . . . . . 11  |-  ( dom 
F  C_  C  ->  ( E. e  e.  dom  F  b  =  ( F `
 e )  ->  E. e  e.  C  b  =  ( F `  e ) ) )
3216, 30, 31sylc 65 . . . . . . . . . 10  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C )  /\  b  e.  B )  ->  E. e  e.  C  b  =  ( F `  e ) )
33323exp 1264 . . . . . . . . 9  |-  ( C  e.  On  ->  (
( B  e.  ~P On  /\  dom  F  e.  C )  ->  (
b  e.  B  ->  E. e  e.  C  b  =  ( F `  e ) ) ) )
3412, 33sylan9r 690 . . . . . . . 8  |-  ( ( C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  (
a  e.  A  -> 
( b  e.  B  ->  E. e  e.  C  b  =  ( F `  e ) ) ) )
3511, 34reximdai 3012 . . . . . . 7  |-  ( ( C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  ( E. a  e.  A  b  e.  B  ->  E. a  e.  A  E. e  e.  C  b  =  ( F `  e ) ) )
36353adant1 1079 . . . . . 6  |-  ( ( A  e.  V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  ( E. a  e.  A  b  e.  B  ->  E. a  e.  A  E. e  e.  C  b  =  ( F `  e ) ) )
37 nfv 1843 . . . . . . 7  |-  F/ d E. e  e.  C  b  =  ( F `  e )
38 nfcv 2764 . . . . . . . 8  |-  F/_ a C
39 nfcv 2764 . . . . . . . . . . 11  |-  F/_ a  _E
40 nfcsb1v 3549 . . . . . . . . . . 11  |-  F/_ a [_ d  /  a ]_ B
4139, 40nfoi 8419 . . . . . . . . . 10  |-  F/_ aOrdIso (  _E  ,  [_ d  /  a ]_ B
)
42 nfcv 2764 . . . . . . . . . 10  |-  F/_ a
e
4341, 42nffv 6198 . . . . . . . . 9  |-  F/_ a
(OrdIso (  _E  ,  [_ d  /  a ]_ B ) `  e
)
4443nfeq2 2780 . . . . . . . 8  |-  F/ a  b  =  (OrdIso (  _E  ,  [_ d  / 
a ]_ B ) `  e )
4538, 44nfrex 3007 . . . . . . 7  |-  F/ a E. e  e.  C  b  =  (OrdIso (  _E  ,  [_ d  / 
a ]_ B ) `  e )
46 csbeq1a 3542 . . . . . . . . . . . 12  |-  ( a  =  d  ->  B  =  [_ d  /  a ]_ B )
47 oieq2 8418 . . . . . . . . . . . 12  |-  ( B  =  [_ d  / 
a ]_ B  -> OrdIso (  _E  ,  B )  = OrdIso
(  _E  ,  [_ d  /  a ]_ B
) )
4846, 47syl 17 . . . . . . . . . . 11  |-  ( a  =  d  -> OrdIso (  _E  ,  B )  = OrdIso
(  _E  ,  [_ d  /  a ]_ B
) )
4917, 48syl5eq 2668 . . . . . . . . . 10  |-  ( a  =  d  ->  F  = OrdIso (  _E  ,  [_ d  /  a ]_ B
) )
5049fveq1d 6193 . . . . . . . . 9  |-  ( a  =  d  ->  ( F `  e )  =  (OrdIso (  _E  ,  [_ d  /  a ]_ B ) `  e
) )
5150eqeq2d 2632 . . . . . . . 8  |-  ( a  =  d  ->  (
b  =  ( F `
 e )  <->  b  =  (OrdIso (  _E  ,  [_ d  /  a ]_ B
) `  e )
) )
5251rexbidv 3052 . . . . . . 7  |-  ( a  =  d  ->  ( E. e  e.  C  b  =  ( F `  e )  <->  E. e  e.  C  b  =  (OrdIso (  _E  ,  [_ d  /  a ]_ B
) `  e )
) )
5337, 45, 52cbvrex 3168 . . . . . 6  |-  ( E. a  e.  A  E. e  e.  C  b  =  ( F `  e )  <->  E. d  e.  A  E. e  e.  C  b  =  (OrdIso (  _E  ,  [_ d  /  a ]_ B
) `  e )
)
5436, 53syl6ib 241 . . . . 5  |-  ( ( A  e.  V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  ( E. a  e.  A  b  e.  B  ->  E. d  e.  A  E. e  e.  C  b  =  (OrdIso (  _E  ,  [_ d  /  a ]_ B ) `  e
) ) )
55 eliun 4524 . . . . 5  |-  ( b  e.  U_ a  e.  A  B  <->  E. a  e.  A  b  e.  B )
56 vex 3203 . . . . . . . . . . 11  |-  d  e. 
_V
57 vex 3203 . . . . . . . . . . 11  |-  e  e. 
_V
5856, 57op1std 7178 . . . . . . . . . 10  |-  ( c  =  <. d ,  e
>.  ->  ( 1st `  c
)  =  d )
5958csbeq1d 3540 . . . . . . . . 9  |-  ( c  =  <. d ,  e
>.  ->  [_ ( 1st `  c
)  /  a ]_ B  =  [_ d  / 
a ]_ B )
60 oieq2 8418 . . . . . . . . 9  |-  ( [_ ( 1st `  c )  /  a ]_ B  =  [_ d  /  a ]_ B  -> OrdIso (  _E  ,  [_ ( 1st `  c )  /  a ]_ B )  = OrdIso (  _E  ,  [_ d  / 
a ]_ B ) )
6159, 60syl 17 . . . . . . . 8  |-  ( c  =  <. d ,  e
>.  -> OrdIso (  _E  ,  [_ ( 1st `  c )  /  a ]_ B
)  = OrdIso (  _E  ,  [_ d  /  a ]_ B ) )
6256, 57op2ndd 7179 . . . . . . . 8  |-  ( c  =  <. d ,  e
>.  ->  ( 2nd `  c
)  =  e )
6361, 62fveq12d 6197 . . . . . . 7  |-  ( c  =  <. d ,  e
>.  ->  (OrdIso (  _E  ,  [_ ( 1st `  c
)  /  a ]_ B ) `  ( 2nd `  c ) )  =  (OrdIso (  _E  ,  [_ d  / 
a ]_ B ) `  e ) )
6463eqeq2d 2632 . . . . . 6  |-  ( c  =  <. d ,  e
>.  ->  ( b  =  (OrdIso (  _E  ,  [_ ( 1st `  c
)  /  a ]_ B ) `  ( 2nd `  c ) )  <-> 
b  =  (OrdIso (  _E  ,  [_ d  / 
a ]_ B ) `  e ) ) )
6564rexxp 5264 . . . . 5  |-  ( E. c  e.  ( A  X.  C ) b  =  (OrdIso (  _E  ,  [_ ( 1st `  c )  /  a ]_ B ) `  ( 2nd `  c ) )  <->  E. d  e.  A  E. e  e.  C  b  =  (OrdIso (  _E  ,  [_ d  / 
a ]_ B ) `  e ) )
6654, 55, 653imtr4g 285 . . . 4  |-  ( ( A  e.  V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  (
b  e.  U_ a  e.  A  B  ->  E. c  e.  ( A  X.  C ) b  =  (OrdIso (  _E  ,  [_ ( 1st `  c )  /  a ]_ B ) `  ( 2nd `  c ) ) ) )
6766imp 445 . . 3  |-  ( ( ( A  e.  V  /\  C  e.  On  /\ 
A. a  e.  A  ( B  e.  ~P On  /\  dom  F  e.  C ) )  /\  b  e.  U_ a  e.  A  B )  ->  E. c  e.  ( A  X.  C ) b  =  (OrdIso (  _E  ,  [_ ( 1st `  c )  /  a ]_ B ) `  ( 2nd `  c ) ) )
688, 67wdomd 8486 . 2  |-  ( ( A  e.  V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  U_ a  e.  A  B  ~<_*  ( A  X.  C
) )
69 hsmexlem.g . . 3  |-  G  = OrdIso
(  _E  ,  U_ a  e.  A  B
)
7069hsmexlem1 9248 . 2  |-  ( (
U_ a  e.  A  B  C_  On  /\  U_ a  e.  A  B  ~<_*  ( A  X.  C ) )  ->  dom  G  e.  (har `  ~P ( A  X.  C ) ) )
716, 68, 70syl2anc 693 1  |-  ( ( A  e.  V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  dom  G  e.  (har `  ~P ( A  X.  C
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   [_csb 3533    C_ wss 3574   ~Pcpw 4158   <.cop 4183   U_ciun 4520   class class class wbr 4653    _E cep 5028    X. cxp 5112   dom cdm 5114   ran crn 5115   Oncon0 5723   -->wf 5884   -onto->wfo 5886   ` cfv 5888   1stc1st 7166   2ndc2nd 7167   Smo wsmo 7442  OrdIsocoi 8414  harchar 8461    ~<_* cwdom 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-smo 7443  df-recs 7468  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-oi 8415  df-har 8463  df-wdom 8464
This theorem is referenced by:  hsmexlem3  9250
  Copyright terms: Public domain W3C validator