Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnfneige0 Structured version   Visualization version   Unicode version

Theorem pnfneige0 29997
Description: A neighborhood of +oo contains an unbounded interval based at a real number. See pnfnei 21024. (Contributed by Thierry Arnoux, 31-Jul-2017.)
Hypothesis
Ref Expression
pnfneige0.j  |-  J  =  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )
Assertion
Ref Expression
pnfneige0  |-  ( ( A  e.  J  /\ +oo  e.  A )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A )
Distinct variable group:    x, A
Allowed substitution hint:    J( x)

Proof of Theorem pnfneige0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 0red 10041 . . . 4  |-  ( ( ( ( ( A  e.  J  /\ +oo  e.  A )  /\  y  e.  RR )  /\  (
y (,] +oo )  C_  ( A  i^i  (
0 (,] +oo )
) )  /\  y  <  0 )  ->  0  e.  RR )
2 simpllr 799 . . . 4  |-  ( ( ( ( ( A  e.  J  /\ +oo  e.  A )  /\  y  e.  RR )  /\  (
y (,] +oo )  C_  ( A  i^i  (
0 (,] +oo )
) )  /\  -.  y  <  0 )  -> 
y  e.  RR )
31, 2ifclda 4120 . . 3  |-  ( ( ( ( A  e.  J  /\ +oo  e.  A )  /\  y  e.  RR )  /\  (
y (,] +oo )  C_  ( A  i^i  (
0 (,] +oo )
) )  ->  if ( y  <  0 ,  0 ,  y )  e.  RR )
4 rexr 10085 . . . . . . 7  |-  ( y  e.  RR  ->  y  e.  RR* )
5 0xr 10086 . . . . . . . 8  |-  0  e.  RR*
65a1i 11 . . . . . . 7  |-  ( y  e.  RR  ->  0  e.  RR* )
7 pnfxr 10092 . . . . . . . 8  |- +oo  e.  RR*
87a1i 11 . . . . . . 7  |-  ( y  e.  RR  -> +oo  e.  RR* )
9 iocinif 29543 . . . . . . 7  |-  ( ( y  e.  RR*  /\  0  e.  RR*  /\ +oo  e.  RR* )  ->  ( (
y (,] +oo )  i^i  ( 0 (,] +oo ) )  =  if ( y  <  0 ,  ( 0 (,] +oo ) ,  ( y (,] +oo ) ) )
104, 6, 8, 9syl3anc 1326 . . . . . 6  |-  ( y  e.  RR  ->  (
( y (,] +oo )  i^i  ( 0 (,] +oo ) )  =  if ( y  <  0 ,  ( 0 (,] +oo ) ,  ( y (,] +oo ) ) )
11 ovif 6737 . . . . . 6  |-  ( if ( y  <  0 ,  0 ,  y ) (,] +oo )  =  if ( y  <  0 ,  ( 0 (,] +oo ) ,  ( y (,] +oo ) )
1210, 11syl6reqr 2675 . . . . 5  |-  ( y  e.  RR  ->  ( if ( y  <  0 ,  0 ,  y ) (,] +oo )  =  ( ( y (,] +oo )  i^i  ( 0 (,] +oo ) ) )
1312ad2antlr 763 . . . 4  |-  ( ( ( ( A  e.  J  /\ +oo  e.  A )  /\  y  e.  RR )  /\  (
y (,] +oo )  C_  ( A  i^i  (
0 (,] +oo )
) )  ->  ( if ( y  <  0 ,  0 ,  y ) (,] +oo )  =  ( ( y (,] +oo )  i^i  ( 0 (,] +oo ) ) )
14 iocssicc 12261 . . . . . 6  |-  ( 0 (,] +oo )  C_  ( 0 [,] +oo )
15 sslin 3839 . . . . . 6  |-  ( ( 0 (,] +oo )  C_  ( 0 [,] +oo )  ->  ( ( y (,] +oo )  i^i  ( 0 (,] +oo ) )  C_  (
( y (,] +oo )  i^i  ( 0 [,] +oo ) ) )
1614, 15mp1i 13 . . . . 5  |-  ( ( ( ( A  e.  J  /\ +oo  e.  A )  /\  y  e.  RR )  /\  (
y (,] +oo )  C_  ( A  i^i  (
0 (,] +oo )
) )  ->  (
( y (,] +oo )  i^i  ( 0 (,] +oo ) )  C_  (
( y (,] +oo )  i^i  ( 0 [,] +oo ) ) )
17 simpr 477 . . . . . 6  |-  ( ( ( ( A  e.  J  /\ +oo  e.  A )  /\  y  e.  RR )  /\  (
y (,] +oo )  C_  ( A  i^i  (
0 (,] +oo )
) )  ->  (
y (,] +oo )  C_  ( A  i^i  (
0 (,] +oo )
) )
18 ssin 3835 . . . . . . . 8  |-  ( ( ( y (,] +oo )  C_  A  /\  (
y (,] +oo )  C_  ( 0 (,] +oo ) )  <->  ( y (,] +oo )  C_  ( A  i^i  ( 0 (,] +oo ) ) )
1918biimpri 218 . . . . . . 7  |-  ( ( y (,] +oo )  C_  ( A  i^i  (
0 (,] +oo )
)  ->  ( (
y (,] +oo )  C_  A  /\  ( y (,] +oo )  C_  ( 0 (,] +oo ) ) )
2019simpld 475 . . . . . 6  |-  ( ( y (,] +oo )  C_  ( A  i^i  (
0 (,] +oo )
)  ->  ( y (,] +oo )  C_  A
)
21 ssinss1 3841 . . . . . 6  |-  ( ( y (,] +oo )  C_  A  ->  ( (
y (,] +oo )  i^i  ( 0 [,] +oo ) )  C_  A
)
2217, 20, 213syl 18 . . . . 5  |-  ( ( ( ( A  e.  J  /\ +oo  e.  A )  /\  y  e.  RR )  /\  (
y (,] +oo )  C_  ( A  i^i  (
0 (,] +oo )
) )  ->  (
( y (,] +oo )  i^i  ( 0 [,] +oo ) )  C_  A
)
2316, 22sstrd 3613 . . . 4  |-  ( ( ( ( A  e.  J  /\ +oo  e.  A )  /\  y  e.  RR )  /\  (
y (,] +oo )  C_  ( A  i^i  (
0 (,] +oo )
) )  ->  (
( y (,] +oo )  i^i  ( 0 (,] +oo ) )  C_  A
)
2413, 23eqsstrd 3639 . . 3  |-  ( ( ( ( A  e.  J  /\ +oo  e.  A )  /\  y  e.  RR )  /\  (
y (,] +oo )  C_  ( A  i^i  (
0 (,] +oo )
) )  ->  ( if ( y  <  0 ,  0 ,  y ) (,] +oo )  C_  A )
25 oveq1 6657 . . . . 5  |-  ( x  =  if ( y  <  0 ,  0 ,  y )  -> 
( x (,] +oo )  =  ( if ( y  <  0 ,  0 ,  y ) (,] +oo )
)
2625sseq1d 3632 . . . 4  |-  ( x  =  if ( y  <  0 ,  0 ,  y )  -> 
( ( x (,] +oo )  C_  A  <->  ( if ( y  <  0 ,  0 ,  y ) (,] +oo )  C_  A ) )
2726rspcev 3309 . . 3  |-  ( ( if ( y  <  0 ,  0 ,  y )  e.  RR  /\  ( if ( y  <  0 ,  0 ,  y ) (,] +oo )  C_  A )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A )
283, 24, 27syl2anc 693 . 2  |-  ( ( ( ( A  e.  J  /\ +oo  e.  A )  /\  y  e.  RR )  /\  (
y (,] +oo )  C_  ( A  i^i  (
0 (,] +oo )
) )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A )
29 letopon 21009 . . . . . . . . . 10  |-  (ordTop `  <_  )  e.  (TopOn `  RR* )
30 iccssxr 12256 . . . . . . . . . 10  |-  ( 0 [,] +oo )  C_  RR*
31 resttopon 20965 . . . . . . . . . 10  |-  ( ( (ordTop `  <_  )  e.  (TopOn `  RR* )  /\  ( 0 [,] +oo )  C_  RR* )  ->  (
(ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  (TopOn `  (
0 [,] +oo )
) )
3229, 30, 31mp2an 708 . . . . . . . . 9  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  (TopOn `  ( 0 [,] +oo ) )
3332topontopi 20720 . . . . . . . 8  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  Top
3433a1i 11 . . . . . . 7  |-  ( A  e.  J  ->  (
(ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  Top )
35 ovex 6678 . . . . . . . 8  |-  ( 0 (,] +oo )  e. 
_V
3635a1i 11 . . . . . . 7  |-  ( A  e.  J  ->  (
0 (,] +oo )  e.  _V )
37 pnfneige0.j . . . . . . . . . 10  |-  J  =  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )
38 xrge0topn 29989 . . . . . . . . . 10  |-  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
3937, 38eqtri 2644 . . . . . . . . 9  |-  J  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
4039eleq2i 2693 . . . . . . . 8  |-  ( A  e.  J  <->  A  e.  ( (ordTop `  <_  )t  ( 0 [,] +oo ) ) )
4140biimpi 206 . . . . . . 7  |-  ( A  e.  J  ->  A  e.  ( (ordTop `  <_  )t  ( 0 [,] +oo )
) )
42 elrestr 16089 . . . . . . 7  |-  ( ( ( (ordTop `  <_  )t  ( 0 [,] +oo )
)  e.  Top  /\  ( 0 (,] +oo )  e.  _V  /\  A  e.  ( (ordTop `  <_  )t  ( 0 [,] +oo )
) )  ->  ( A  i^i  ( 0 (,] +oo ) )  e.  ( ( (ordTop `  <_  )t  ( 0 [,] +oo )
)t  ( 0 (,] +oo ) ) )
4334, 36, 41, 42syl3anc 1326 . . . . . 6  |-  ( A  e.  J  ->  ( A  i^i  ( 0 (,] +oo ) )  e.  ( ( (ordTop `  <_  )t  ( 0 [,] +oo )
)t  ( 0 (,] +oo ) ) )
44 letop 21010 . . . . . . 7  |-  (ordTop `  <_  )  e.  Top
45 ovex 6678 . . . . . . 7  |-  ( 0 [,] +oo )  e. 
_V
46 restabs 20969 . . . . . . 7  |-  ( ( (ordTop `  <_  )  e. 
Top  /\  ( 0 (,] +oo )  C_  ( 0 [,] +oo )  /\  ( 0 [,] +oo )  e.  _V )  ->  ( ( (ordTop `  <_  )t  ( 0 [,] +oo ) )t  ( 0 (,] +oo ) )  =  ( (ordTop `  <_  )t  ( 0 (,] +oo ) ) )
4744, 14, 45, 46mp3an 1424 . . . . . 6  |-  ( ( (ordTop `  <_  )t  ( 0 [,] +oo ) )t  ( 0 (,] +oo )
)  =  ( (ordTop `  <_  )t  ( 0 (,] +oo ) )
4843, 47syl6eleq 2711 . . . . 5  |-  ( A  e.  J  ->  ( A  i^i  ( 0 (,] +oo ) )  e.  ( (ordTop `  <_  )t  ( 0 (,] +oo ) ) )
4944a1i 11 . . . . . 6  |-  ( A  e.  J  ->  (ordTop ` 
<_  )  e.  Top )
50 iocpnfordt 21019 . . . . . . 7  |-  ( 0 (,] +oo )  e.  (ordTop `  <_  )
5150a1i 11 . . . . . 6  |-  ( A  e.  J  ->  (
0 (,] +oo )  e.  (ordTop `  <_  ) )
52 ssid 3624 . . . . . . 7  |-  ( 0 (,] +oo )  C_  ( 0 (,] +oo )
5352a1i 11 . . . . . 6  |-  ( A  e.  J  ->  (
0 (,] +oo )  C_  ( 0 (,] +oo ) )
54 inss2 3834 . . . . . . 7  |-  ( A  i^i  ( 0 (,] +oo ) )  C_  (
0 (,] +oo )
5554a1i 11 . . . . . 6  |-  ( A  e.  J  ->  ( A  i^i  ( 0 (,] +oo ) )  C_  (
0 (,] +oo )
)
56 restopnb 20979 . . . . . 6  |-  ( ( ( (ordTop `  <_  )  e.  Top  /\  (
0 (,] +oo )  e.  _V )  /\  (
( 0 (,] +oo )  e.  (ordTop `  <_  )  /\  ( 0 (,] +oo )  C_  ( 0 (,] +oo )  /\  ( A  i^i  (
0 (,] +oo )
)  C_  ( 0 (,] +oo ) ) )  ->  ( ( A  i^i  ( 0 (,] +oo ) )  e.  (ordTop `  <_  )  <->  ( A  i^i  ( 0 (,] +oo ) )  e.  ( (ordTop `  <_  )t  ( 0 (,] +oo ) ) ) )
5749, 36, 51, 53, 55, 56syl23anc 1333 . . . . 5  |-  ( A  e.  J  ->  (
( A  i^i  (
0 (,] +oo )
)  e.  (ordTop `  <_  )  <->  ( A  i^i  ( 0 (,] +oo ) )  e.  ( (ordTop `  <_  )t  ( 0 (,] +oo ) ) ) )
5848, 57mpbird 247 . . . 4  |-  ( A  e.  J  ->  ( A  i^i  ( 0 (,] +oo ) )  e.  (ordTop `  <_  ) )
5958adantr 481 . . 3  |-  ( ( A  e.  J  /\ +oo  e.  A )  -> 
( A  i^i  (
0 (,] +oo )
)  e.  (ordTop `  <_  ) )
60 simpr 477 . . . 4  |-  ( ( A  e.  J  /\ +oo  e.  A )  -> +oo  e.  A )
61 0ltpnf 11956 . . . . . 6  |-  0  < +oo
62 ubioc1 12227 . . . . . 6  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  0  < +oo )  -> +oo  e.  ( 0 (,] +oo ) )
635, 7, 61, 62mp3an 1424 . . . . 5  |- +oo  e.  ( 0 (,] +oo )
6463a1i 11 . . . 4  |-  ( ( A  e.  J  /\ +oo  e.  A )  -> +oo  e.  ( 0 (,] +oo ) )
6560, 64elind 3798 . . 3  |-  ( ( A  e.  J  /\ +oo  e.  A )  -> +oo  e.  ( A  i^i  ( 0 (,] +oo ) ) )
66 pnfnei 21024 . . 3  |-  ( ( ( A  i^i  (
0 (,] +oo )
)  e.  (ordTop `  <_  )  /\ +oo  e.  ( A  i^i  (
0 (,] +oo )
) )  ->  E. y  e.  RR  ( y (,] +oo )  C_  ( A  i^i  ( 0 (,] +oo ) ) )
6759, 65, 66syl2anc 693 . 2  |-  ( ( A  e.  J  /\ +oo  e.  A )  ->  E. y  e.  RR  ( y (,] +oo )  C_  ( A  i^i  ( 0 (,] +oo ) ) )
6828, 67r19.29a 3078 1  |-  ( ( A  e.  J  /\ +oo  e.  A )  ->  E. x  e.  RR  ( x (,] +oo )  C_  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   (,]cioc 12176   [,]cicc 12178   ↾s cress 15858   ↾t crest 16081   TopOpenctopn 16082  ordTopcordt 16159   RR*scxrs 16160   Topctop 20698  TopOnctopon 20715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-tset 15960  df-ple 15961  df-ds 15964  df-rest 16083  df-topn 16084  df-topgen 16104  df-ordt 16161  df-xrs 16162  df-ps 17200  df-tsr 17201  df-top 20699  df-topon 20716  df-bases 20750
This theorem is referenced by:  lmxrge0  29998
  Copyright terms: Public domain W3C validator