Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwslnmlem2 Structured version   Visualization version   Unicode version

Theorem pwslnmlem2 37663
Description: A sum of powers is Noetherian. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
pwslnmlem2.a  |-  A  e. 
_V
pwslnmlem2.b  |-  B  e. 
_V
pwslnmlem2.x  |-  X  =  ( W  ^s  A )
pwslnmlem2.y  |-  Y  =  ( W  ^s  B )
pwslnmlem2.z  |-  Z  =  ( W  ^s  ( A  u.  B ) )
pwslnmlem2.w  |-  ( ph  ->  W  e.  LMod )
pwslnmlem2.dj  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
pwslnmlem2.xn  |-  ( ph  ->  X  e. LNoeM )
pwslnmlem2.yn  |-  ( ph  ->  Y  e. LNoeM )
Assertion
Ref Expression
pwslnmlem2  |-  ( ph  ->  Z  e. LNoeM )

Proof of Theorem pwslnmlem2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwslnmlem2.w . . 3  |-  ( ph  ->  W  e.  LMod )
2 pwslnmlem2.a . . . . 5  |-  A  e. 
_V
3 pwslnmlem2.b . . . . 5  |-  B  e. 
_V
42, 3unex 6956 . . . 4  |-  ( A  u.  B )  e. 
_V
54a1i 11 . . 3  |-  ( ph  ->  ( A  u.  B
)  e.  _V )
6 ssun1 3776 . . . 4  |-  A  C_  ( A  u.  B
)
76a1i 11 . . 3  |-  ( ph  ->  A  C_  ( A  u.  B ) )
8 pwslnmlem2.z . . . 4  |-  Z  =  ( W  ^s  ( A  u.  B ) )
9 pwslnmlem2.x . . . 4  |-  X  =  ( W  ^s  A )
10 eqid 2622 . . . 4  |-  ( Base `  Z )  =  (
Base `  Z )
11 eqid 2622 . . . 4  |-  ( Base `  X )  =  (
Base `  X )
12 eqid 2622 . . . 4  |-  ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) )  =  ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) )
138, 9, 10, 11, 12pwssplit3 19061 . . 3  |-  ( ( W  e.  LMod  /\  ( A  u.  B )  e.  _V  /\  A  C_  ( A  u.  B
) )  ->  (
x  e.  ( Base `  Z )  |->  ( x  |`  A ) )  e.  ( Z LMHom  X ) )
141, 5, 7, 13syl3anc 1326 . 2  |-  ( ph  ->  ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) )  e.  ( Z LMHom 
X ) )
15 fvex 6201 . . . . . 6  |-  ( 0g
`  X )  e. 
_V
1612mptiniseg 5629 . . . . . 6  |-  ( ( 0g `  X )  e.  _V  ->  ( `' ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) " { ( 0g `  X ) } )  =  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( 0g `  X ) } )
1715, 16ax-mp 5 . . . . 5  |-  ( `' ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) ) " { ( 0g `  X ) } )  =  {
x  e.  ( Base `  Z )  |  ( x  |`  A )  =  ( 0g `  X ) }
18 lmodgrp 18870 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  W  e. 
Grp )
19 grpmnd 17429 . . . . . . . . . 10  |-  ( W  e.  Grp  ->  W  e.  Mnd )
201, 18, 193syl 18 . . . . . . . . 9  |-  ( ph  ->  W  e.  Mnd )
21 eqid 2622 . . . . . . . . . 10  |-  ( 0g
`  W )  =  ( 0g `  W
)
229, 21pws0g 17326 . . . . . . . . 9  |-  ( ( W  e.  Mnd  /\  A  e.  _V )  ->  ( A  X.  {
( 0g `  W
) } )  =  ( 0g `  X
) )
2320, 2, 22sylancl 694 . . . . . . . 8  |-  ( ph  ->  ( A  X.  {
( 0g `  W
) } )  =  ( 0g `  X
) )
2423eqcomd 2628 . . . . . . 7  |-  ( ph  ->  ( 0g `  X
)  =  ( A  X.  { ( 0g
`  W ) } ) )
2524eqeq2d 2632 . . . . . 6  |-  ( ph  ->  ( ( x  |`  A )  =  ( 0g `  X )  <-> 
( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) ) )
2625rabbidv 3189 . . . . 5  |-  ( ph  ->  { x  e.  (
Base `  Z )  |  ( x  |`  A )  =  ( 0g `  X ) }  =  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )
2717, 26syl5eq 2668 . . . 4  |-  ( ph  ->  ( `' ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) " { ( 0g `  X ) } )  =  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )
2827oveq2d 6666 . . 3  |-  ( ph  ->  ( Zs  ( `' ( x  e.  ( Base `  Z )  |->  ( x  |`  A ) ) " { ( 0g `  X ) } ) )  =  ( Zs  { x  e.  ( Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } ) )
29 pwslnmlem2.yn . . . 4  |-  ( ph  ->  Y  e. LNoeM )
30 pwslnmlem2.dj . . . . . 6  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
31 eqid 2622 . . . . . . 7  |-  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) }  =  { x  e.  ( Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) }
32 eqid 2622 . . . . . . 7  |-  ( y  e.  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) }  |->  ( y  |`  B )
)  =  ( y  e.  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) }  |->  ( y  |`  B )
)
33 pwslnmlem2.y . . . . . . 7  |-  Y  =  ( W  ^s  B )
34 eqid 2622 . . . . . . 7  |-  ( Zs  { x  e.  ( Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )  =  ( Zs  { x  e.  (
Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )
358, 10, 21, 31, 32, 9, 33, 34pwssplit4 37659 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( A  u.  B )  e.  _V  /\  ( A  i^i  B )  =  (/) )  ->  ( y  e.  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) }  |->  ( y  |`  B )
)  e.  ( ( Zs  { x  e.  (
Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } ) LMIso 
Y ) )
361, 5, 30, 35syl3anc 1326 . . . . 5  |-  ( ph  ->  ( y  e.  {
x  e.  ( Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) }  |->  ( y  |`  B ) )  e.  ( ( Zs  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } ) LMIso 
Y ) )
37 brlmici 19069 . . . . 5  |-  ( ( y  e.  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) }  |->  ( y  |`  B )
)  e.  ( ( Zs  { x  e.  (
Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } ) LMIso 
Y )  ->  ( Zs  { x  e.  ( Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )  ~=ph𝑚 
Y )
38 lnmlmic 37658 . . . . 5  |-  ( ( Zs  { x  e.  (
Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } ) 
~=ph𝑚  Y  ->  ( ( Zs  { x  e.  ( Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )  e. LNoeM  <->  Y  e. LNoeM ) )
3936, 37, 383syl 18 . . . 4  |-  ( ph  ->  ( ( Zs  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )  e. LNoeM 
<->  Y  e. LNoeM ) )
4029, 39mpbird 247 . . 3  |-  ( ph  ->  ( Zs  { x  e.  (
Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )  e. LNoeM )
4128, 40eqeltrd 2701 . 2  |-  ( ph  ->  ( Zs  ( `' ( x  e.  ( Base `  Z )  |->  ( x  |`  A ) ) " { ( 0g `  X ) } ) )  e. LNoeM )
428, 9, 10, 11, 12pwssplit1 19059 . . . . . . 7  |-  ( ( W  e.  Mnd  /\  ( A  u.  B
)  e.  _V  /\  A  C_  ( A  u.  B ) )  -> 
( x  e.  (
Base `  Z )  |->  ( x  |`  A ) ) : ( Base `  Z ) -onto-> ( Base `  X ) )
4320, 5, 7, 42syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) ) : ( Base `  Z ) -onto-> ( Base `  X ) )
44 forn 6118 . . . . . 6  |-  ( ( x  e.  ( Base `  Z )  |->  ( x  |`  A ) ) : ( Base `  Z
) -onto-> ( Base `  X
)  ->  ran  ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) )  =  ( Base `  X
) )
4543, 44syl 17 . . . . 5  |-  ( ph  ->  ran  ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) )  =  ( Base `  X
) )
4645oveq2d 6666 . . . 4  |-  ( ph  ->  ( Xs  ran  ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) )  =  ( Xs  ( Base `  X ) ) )
47 pwslnmlem2.xn . . . . 5  |-  ( ph  ->  X  e. LNoeM )
4811ressid 15935 . . . . 5  |-  ( X  e. LNoeM  ->  ( Xs  ( Base `  X ) )  =  X )
4947, 48syl 17 . . . 4  |-  ( ph  ->  ( Xs  ( Base `  X
) )  =  X )
5046, 49eqtrd 2656 . . 3  |-  ( ph  ->  ( Xs  ran  ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) )  =  X )
5150, 47eqeltrd 2701 . 2  |-  ( ph  ->  ( Xs  ran  ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) )  e. LNoeM )
52 eqid 2622 . . 3  |-  ( 0g
`  X )  =  ( 0g `  X
)
53 eqid 2622 . . 3  |-  ( `' ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) ) " { ( 0g `  X ) } )  =  ( `' ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) " { ( 0g `  X ) } )
54 eqid 2622 . . 3  |-  ( Zs  ( `' ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) " { ( 0g `  X ) } ) )  =  ( Zs  ( `' ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) " { ( 0g `  X ) } ) )
55 eqid 2622 . . 3  |-  ( Xs  ran  ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) ) )  =  ( Xs 
ran  ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) )
5652, 53, 54, 55lmhmlnmsplit 37657 . 2  |-  ( ( ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) )  e.  ( Z LMHom 
X )  /\  ( Zs  ( `' ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) " { ( 0g `  X ) } ) )  e. LNoeM  /\  ( Xs  ran  ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) ) )  e. LNoeM )  ->  Z  e. LNoeM )
5714, 41, 51, 56syl3anc 1326 1  |-  ( ph  ->  Z  e. LNoeM )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   0gc0g 16100    ^s cpws 16107   Mndcmnd 17294   Grpcgrp 17422   LModclmod 18863   LMHom clmhm 19019   LMIso clmim 19020    ~=ph𝑚 clmic 19021  LNoeMclnm 37645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lmhm 19022  df-lmim 19023  df-lmic 19024  df-lfig 37638  df-lnm 37646
This theorem is referenced by:  pwslnm  37664
  Copyright terms: Public domain W3C validator