MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qnumdenbi Structured version   Visualization version   Unicode version

Theorem qnumdenbi 15452
Description: Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qnumdenbi  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( B  gcd  C )  =  1  /\  A  =  ( B  /  C ) )  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )

Proof of Theorem qnumdenbi
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 qredeu 15372 . . . . . . 7  |-  ( A  e.  QQ  ->  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )
2 riotacl 6625 . . . . . . 7  |-  ( E! a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) )  ->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  e.  ( ZZ 
X.  NN ) )
3 1st2nd2 7205 . . . . . . 7  |-  ( (
iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  e.  ( ZZ 
X.  NN )  -> 
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >. )
41, 2, 33syl 18 . . . . . 6  |-  ( A  e.  QQ  ->  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >. )
5 qnumval 15445 . . . . . . 7  |-  ( A  e.  QQ  ->  (numer `  A )  =  ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) )
6 qdenval 15446 . . . . . . 7  |-  ( A  e.  QQ  ->  (denom `  A )  =  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) )
75, 6opeq12d 4410 . . . . . 6  |-  ( A  e.  QQ  ->  <. (numer `  A ) ,  (denom `  A ) >.  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >. )
84, 7eqtr4d 2659 . . . . 5  |-  ( A  e.  QQ  ->  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. (numer `  A ) ,  (denom `  A ) >. )
98eqeq1d 2624 . . . 4  |-  ( A  e.  QQ  ->  (
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >.  <->  <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >. )
)
1093ad2ant1 1082 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >.  <->  <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >. )
)
11 fvex 6201 . . . 4  |-  (numer `  A )  e.  _V
12 fvex 6201 . . . 4  |-  (denom `  A )  e.  _V
1311, 12opth 4945 . . 3  |-  ( <.
(numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >.  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) )
1410, 13syl6rbb 277 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( (numer `  A
)  =  B  /\  (denom `  A )  =  C )  <->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >. ) )
15 opelxpi 5148 . . . 4  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  -> 
<. B ,  C >.  e.  ( ZZ  X.  NN ) )
16153adant1 1079 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  <. B ,  C >.  e.  ( ZZ 
X.  NN ) )
1713ad2ant1 1082 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )
18 fveq2 6191 . . . . . . 7  |-  ( a  =  <. B ,  C >.  ->  ( 1st `  a
)  =  ( 1st `  <. B ,  C >. ) )
19 fveq2 6191 . . . . . . 7  |-  ( a  =  <. B ,  C >.  ->  ( 2nd `  a
)  =  ( 2nd `  <. B ,  C >. ) )
2018, 19oveq12d 6668 . . . . . 6  |-  ( a  =  <. B ,  C >.  ->  ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) ) )
2120eqeq1d 2624 . . . . 5  |-  ( a  =  <. B ,  C >.  ->  ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  <-> 
( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  1 ) )
2218, 19oveq12d 6668 . . . . . 6  |-  ( a  =  <. B ,  C >.  ->  ( ( 1st `  a )  /  ( 2nd `  a ) )  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. ) ) )
2322eqeq2d 2632 . . . . 5  |-  ( a  =  <. B ,  C >.  ->  ( A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) )  <->  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) ) )
2421, 23anbi12d 747 . . . 4  |-  ( a  =  <. B ,  C >.  ->  ( ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) )  <-> 
( ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) )  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) ) ) )
2524riota2 6633 . . 3  |-  ( (
<. B ,  C >.  e.  ( ZZ  X.  NN )  /\  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  ->  ( (
( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. ) ) )  <->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >. ) )
2616, 17, 25syl2anc 693 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) )  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) )  <->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >. ) )
27 op1stg 7180 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( 1st `  <. B ,  C >. )  =  B )
28 op2ndg 7181 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( 2nd `  <. B ,  C >. )  =  C )
2927, 28oveq12d 6668 . . . . 5  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  ( B  gcd  C ) )
30293adant1 1079 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  ( B  gcd  C ) )
3130eqeq1d 2624 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  1  <->  ( B  gcd  C )  =  1 ) )
32273adant1 1079 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( 1st `  <. B ,  C >. )  =  B )
33283adant1 1079 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( 2nd `  <. B ,  C >. )  =  C )
3432, 33oveq12d 6668 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
)  =  ( B  /  C ) )
3534eqeq2d 2632 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. ) )  <->  A  =  ( B  /  C
) ) )
3631, 35anbi12d 747 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) )  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) )  <->  ( ( B  gcd  C )  =  1  /\  A  =  ( B  /  C
) ) ) )
3714, 26, 363bitr2rd 297 1  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( B  gcd  C )  =  1  /\  A  =  ( B  /  C ) )  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E!wreu 2914   <.cop 4183    X. cxp 5112   ` cfv 5888   iota_crio 6610  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   1c1 9937    / cdiv 10684   NNcn 11020   ZZcz 11377   QQcq 11788    gcd cgcd 15216  numercnumer 15441  denomcdenom 15442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-numer 15443  df-denom 15444
This theorem is referenced by:  qnumdencoprm  15453  qeqnumdivden  15454  divnumden  15456  numdensq  15462  numdenneg  29563  qqh0  30028  qqh1  30029
  Copyright terms: Public domain W3C validator