| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relexp01min | Structured version Visualization version Unicode version | ||
| Description: With exponents limited to 0 and 1, the composition of powers of a relation is the relation raised to the minimum of exponents. (Contributed by RP, 12-Jun-2020.) |
| Ref | Expression |
|---|---|
| relexp01min |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 4197 |
. . 3
| |
| 2 | elpri 4197 |
. . 3
| |
| 3 | dmresi 5457 |
. . . . . . . . . . 11
| |
| 4 | rnresi 5479 |
. . . . . . . . . . 11
| |
| 5 | 3, 4 | uneq12i 3765 |
. . . . . . . . . 10
|
| 6 | unidm 3756 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | eqtri 2644 |
. . . . . . . . 9
|
| 8 | 7 | reseq2i 5393 |
. . . . . . . 8
|
| 9 | simp1 1061 |
. . . . . . . . . . . 12
| |
| 10 | 9 | oveq2d 6666 |
. . . . . . . . . . 11
|
| 11 | simp3l 1089 |
. . . . . . . . . . . 12
| |
| 12 | relexp0g 13762 |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . . 11
|
| 14 | 10, 13 | eqtrd 2656 |
. . . . . . . . . 10
|
| 15 | simp2 1062 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | oveq12d 6668 |
. . . . . . . . 9
|
| 17 | dmexg 7097 |
. . . . . . . . . . . 12
| |
| 18 | rnexg 7098 |
. . . . . . . . . . . 12
| |
| 19 | unexg 6959 |
. . . . . . . . . . . 12
| |
| 20 | 17, 18, 19 | syl2anc 693 |
. . . . . . . . . . 11
|
| 21 | 20 | resiexd 6480 |
. . . . . . . . . 10
|
| 22 | relexp0g 13762 |
. . . . . . . . . 10
| |
| 23 | 11, 21, 22 | 3syl 18 |
. . . . . . . . 9
|
| 24 | 16, 23 | eqtrd 2656 |
. . . . . . . 8
|
| 25 | simp3r 1090 |
. . . . . . . . . . 11
| |
| 26 | 0re 10040 |
. . . . . . . . . . . . . 14
| |
| 27 | 26 | ltnri 10146 |
. . . . . . . . . . . . 13
|
| 28 | 9, 15 | breq12d 4666 |
. . . . . . . . . . . . 13
|
| 29 | 27, 28 | mtbiri 317 |
. . . . . . . . . . . 12
|
| 30 | 29 | iffalsed 4097 |
. . . . . . . . . . 11
|
| 31 | 25, 30, 15 | 3eqtrd 2660 |
. . . . . . . . . 10
|
| 32 | 31 | oveq2d 6666 |
. . . . . . . . 9
|
| 33 | 32, 13 | eqtrd 2656 |
. . . . . . . 8
|
| 34 | 8, 24, 33 | 3eqtr4a 2682 |
. . . . . . 7
|
| 35 | 34 | 3exp 1264 |
. . . . . 6
|
| 36 | simp1 1061 |
. . . . . . . . . . 11
| |
| 37 | 36 | oveq2d 6666 |
. . . . . . . . . 10
|
| 38 | simp3l 1089 |
. . . . . . . . . . 11
| |
| 39 | relexp1g 13766 |
. . . . . . . . . . 11
| |
| 40 | 38, 39 | syl 17 |
. . . . . . . . . 10
|
| 41 | 37, 40 | eqtrd 2656 |
. . . . . . . . 9
|
| 42 | simp2 1062 |
. . . . . . . . 9
| |
| 43 | 41, 42 | oveq12d 6668 |
. . . . . . . 8
|
| 44 | simp3r 1090 |
. . . . . . . . . 10
| |
| 45 | 0lt1 10550 |
. . . . . . . . . . . . 13
| |
| 46 | 1re 10039 |
. . . . . . . . . . . . . 14
| |
| 47 | 26, 46 | ltnsymi 10156 |
. . . . . . . . . . . . 13
|
| 48 | 45, 47 | mp1i 13 |
. . . . . . . . . . . 12
|
| 49 | 36, 42 | breq12d 4666 |
. . . . . . . . . . . 12
|
| 50 | 48, 49 | mtbird 315 |
. . . . . . . . . . 11
|
| 51 | 50 | iffalsed 4097 |
. . . . . . . . . 10
|
| 52 | 44, 51, 42 | 3eqtrd 2660 |
. . . . . . . . 9
|
| 53 | 52 | oveq2d 6666 |
. . . . . . . 8
|
| 54 | 43, 53 | eqtr4d 2659 |
. . . . . . 7
|
| 55 | 54 | 3exp 1264 |
. . . . . 6
|
| 56 | 35, 55 | jaoi 394 |
. . . . 5
|
| 57 | ovex 6678 |
. . . . . . . . 9
| |
| 58 | relexp1g 13766 |
. . . . . . . . 9
| |
| 59 | 57, 58 | mp1i 13 |
. . . . . . . 8
|
| 60 | simp1 1061 |
. . . . . . . . . 10
| |
| 61 | 60 | oveq2d 6666 |
. . . . . . . . 9
|
| 62 | simp2 1062 |
. . . . . . . . 9
| |
| 63 | 61, 62 | oveq12d 6668 |
. . . . . . . 8
|
| 64 | simp3r 1090 |
. . . . . . . . . 10
| |
| 65 | 60, 62 | breq12d 4666 |
. . . . . . . . . . . 12
|
| 66 | 45, 65 | mpbiri 248 |
. . . . . . . . . . 11
|
| 67 | 66 | iftrued 4094 |
. . . . . . . . . 10
|
| 68 | 64, 67, 60 | 3eqtrd 2660 |
. . . . . . . . 9
|
| 69 | 68 | oveq2d 6666 |
. . . . . . . 8
|
| 70 | 59, 63, 69 | 3eqtr4d 2666 |
. . . . . . 7
|
| 71 | 70 | 3exp 1264 |
. . . . . 6
|
| 72 | simp1 1061 |
. . . . . . . . . . 11
| |
| 73 | 72 | oveq2d 6666 |
. . . . . . . . . 10
|
| 74 | simp3l 1089 |
. . . . . . . . . . 11
| |
| 75 | 74, 39 | syl 17 |
. . . . . . . . . 10
|
| 76 | 73, 75 | eqtrd 2656 |
. . . . . . . . 9
|
| 77 | simp2 1062 |
. . . . . . . . 9
| |
| 78 | 76, 77 | oveq12d 6668 |
. . . . . . . 8
|
| 79 | simp3r 1090 |
. . . . . . . . . 10
| |
| 80 | 46 | ltnri 10146 |
. . . . . . . . . . . 12
|
| 81 | 72, 77 | breq12d 4666 |
. . . . . . . . . . . 12
|
| 82 | 80, 81 | mtbiri 317 |
. . . . . . . . . . 11
|
| 83 | 82 | iffalsed 4097 |
. . . . . . . . . 10
|
| 84 | 79, 83, 77 | 3eqtrd 2660 |
. . . . . . . . 9
|
| 85 | 84 | oveq2d 6666 |
. . . . . . . 8
|
| 86 | 78, 85 | eqtr4d 2659 |
. . . . . . 7
|
| 87 | 86 | 3exp 1264 |
. . . . . 6
|
| 88 | 71, 87 | jaoi 394 |
. . . . 5
|
| 89 | 56, 88 | jaod 395 |
. . . 4
|
| 90 | 89 | imp 445 |
. . 3
|
| 91 | 1, 2, 90 | syl2an 494 |
. 2
|
| 92 | 91 | impcom 446 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-seq 12802 df-relexp 13761 |
| This theorem is referenced by: relexp1idm 38006 relexp0idm 38007 |
| Copyright terms: Public domain | W3C validator |