Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexp01min Structured version   Visualization version   Unicode version

Theorem relexp01min 38005
Description: With exponents limited to 0 and 1, the composition of powers of a relation is the relation raised to the minimum of exponents. (Contributed by RP, 12-Jun-2020.)
Assertion
Ref Expression
relexp01min  |-  ( ( ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
)  /\  ( J  e.  { 0 ,  1 }  /\  K  e. 
{ 0 ,  1 } ) )  -> 
( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) )

Proof of Theorem relexp01min
StepHypRef Expression
1 elpri 4197 . . 3  |-  ( J  e.  { 0 ,  1 }  ->  ( J  =  0  \/  J  =  1 ) )
2 elpri 4197 . . 3  |-  ( K  e.  { 0 ,  1 }  ->  ( K  =  0  \/  K  =  1 ) )
3 dmresi 5457 . . . . . . . . . . 11  |-  dom  (  _I  |`  ( dom  R  u.  ran  R ) )  =  ( dom  R  u.  ran  R )
4 rnresi 5479 . . . . . . . . . . 11  |-  ran  (  _I  |`  ( dom  R  u.  ran  R ) )  =  ( dom  R  u.  ran  R )
53, 4uneq12i 3765 . . . . . . . . . 10  |-  ( dom  (  _I  |`  ( dom  R  u.  ran  R
) )  u.  ran  (  _I  |`  ( dom 
R  u.  ran  R
) ) )  =  ( ( dom  R  u.  ran  R )  u.  ( dom  R  u.  ran  R ) )
6 unidm 3756 . . . . . . . . . 10  |-  ( ( dom  R  u.  ran  R )  u.  ( dom 
R  u.  ran  R
) )  =  ( dom  R  u.  ran  R )
75, 6eqtri 2644 . . . . . . . . 9  |-  ( dom  (  _I  |`  ( dom  R  u.  ran  R
) )  u.  ran  (  _I  |`  ( dom 
R  u.  ran  R
) ) )  =  ( dom  R  u.  ran  R )
87reseq2i 5393 . . . . . . . 8  |-  (  _I  |`  ( dom  (  _I  |`  ( dom  R  u.  ran  R ) )  u. 
ran  (  _I  |`  ( dom  R  u.  ran  R
) ) ) )  =  (  _I  |`  ( dom  R  u.  ran  R
) )
9 simp1 1061 . . . . . . . . . . . 12  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  J  =  0 )
109oveq2d 6666 . . . . . . . . . . 11  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( R ^r  J )  =  ( R ^r  0 ) )
11 simp3l 1089 . . . . . . . . . . . 12  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  R  e.  V )
12 relexp0g 13762 . . . . . . . . . . . 12  |-  ( R  e.  V  ->  ( R ^r  0 )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
1311, 12syl 17 . . . . . . . . . . 11  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( R ^r  0 )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
1410, 13eqtrd 2656 . . . . . . . . . 10  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( R ^r  J )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
15 simp2 1062 . . . . . . . . . 10  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  K  =  0 )
1614, 15oveq12d 6668 . . . . . . . . 9  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  (
( R ^r  J ) ^r  K )  =  ( (  _I  |`  ( dom  R  u.  ran  R
) ) ^r 
0 ) )
17 dmexg 7097 . . . . . . . . . . . 12  |-  ( R  e.  V  ->  dom  R  e.  _V )
18 rnexg 7098 . . . . . . . . . . . 12  |-  ( R  e.  V  ->  ran  R  e.  _V )
19 unexg 6959 . . . . . . . . . . . 12  |-  ( ( dom  R  e.  _V  /\ 
ran  R  e.  _V )  ->  ( dom  R  u.  ran  R )  e. 
_V )
2017, 18, 19syl2anc 693 . . . . . . . . . . 11  |-  ( R  e.  V  ->  ( dom  R  u.  ran  R
)  e.  _V )
2120resiexd 6480 . . . . . . . . . 10  |-  ( R  e.  V  ->  (  _I  |`  ( dom  R  u.  ran  R ) )  e.  _V )
22 relexp0g 13762 . . . . . . . . . 10  |-  ( (  _I  |`  ( dom  R  u.  ran  R ) )  e.  _V  ->  ( (  _I  |`  ( dom  R  u.  ran  R
) ) ^r 
0 )  =  (  _I  |`  ( dom  (  _I  |`  ( dom 
R  u.  ran  R
) )  u.  ran  (  _I  |`  ( dom 
R  u.  ran  R
) ) ) ) )
2311, 21, 223syl 18 . . . . . . . . 9  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  (
(  _I  |`  ( dom  R  u.  ran  R
) ) ^r 
0 )  =  (  _I  |`  ( dom  (  _I  |`  ( dom 
R  u.  ran  R
) )  u.  ran  (  _I  |`  ( dom 
R  u.  ran  R
) ) ) ) )
2416, 23eqtrd 2656 . . . . . . . 8  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  (
( R ^r  J ) ^r  K )  =  (  _I  |`  ( dom  (  _I  |`  ( dom 
R  u.  ran  R
) )  u.  ran  (  _I  |`  ( dom 
R  u.  ran  R
) ) ) ) )
25 simp3r 1090 . . . . . . . . . . 11  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  I  =  if ( J  < 
K ,  J ,  K ) )
26 0re 10040 . . . . . . . . . . . . . 14  |-  0  e.  RR
2726ltnri 10146 . . . . . . . . . . . . 13  |-  -.  0  <  0
289, 15breq12d 4666 . . . . . . . . . . . . 13  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( J  <  K  <->  0  <  0 ) )
2927, 28mtbiri 317 . . . . . . . . . . . 12  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  -.  J  <  K )
3029iffalsed 4097 . . . . . . . . . . 11  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  if ( J  <  K ,  J ,  K )  =  K )
3125, 30, 153eqtrd 2660 . . . . . . . . . 10  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  I  =  0 )
3231oveq2d 6666 . . . . . . . . 9  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( R ^r  I )  =  ( R ^r  0 ) )
3332, 13eqtrd 2656 . . . . . . . 8  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( R ^r  I )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
348, 24, 333eqtr4a 2682 . . . . . . 7  |-  ( ( J  =  0  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  (
( R ^r  J ) ^r  K )  =  ( R ^r  I ) )
35343exp 1264 . . . . . 6  |-  ( J  =  0  ->  ( K  =  0  ->  ( ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
)  ->  ( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) ) )
36 simp1 1061 . . . . . . . . . . 11  |-  ( ( J  =  1  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  J  =  1 )
3736oveq2d 6666 . . . . . . . . . 10  |-  ( ( J  =  1  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( R ^r  J )  =  ( R ^r  1 ) )
38 simp3l 1089 . . . . . . . . . . 11  |-  ( ( J  =  1  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  R  e.  V )
39 relexp1g 13766 . . . . . . . . . . 11  |-  ( R  e.  V  ->  ( R ^r  1 )  =  R )
4038, 39syl 17 . . . . . . . . . 10  |-  ( ( J  =  1  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( R ^r  1 )  =  R )
4137, 40eqtrd 2656 . . . . . . . . 9  |-  ( ( J  =  1  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( R ^r  J )  =  R )
42 simp2 1062 . . . . . . . . 9  |-  ( ( J  =  1  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  K  =  0 )
4341, 42oveq12d 6668 . . . . . . . 8  |-  ( ( J  =  1  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  (
( R ^r  J ) ^r  K )  =  ( R ^r  0 ) )
44 simp3r 1090 . . . . . . . . . 10  |-  ( ( J  =  1  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  I  =  if ( J  < 
K ,  J ,  K ) )
45 0lt1 10550 . . . . . . . . . . . . 13  |-  0  <  1
46 1re 10039 . . . . . . . . . . . . . 14  |-  1  e.  RR
4726, 46ltnsymi 10156 . . . . . . . . . . . . 13  |-  ( 0  <  1  ->  -.  1  <  0 )
4845, 47mp1i 13 . . . . . . . . . . . 12  |-  ( ( J  =  1  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  -.  1  <  0 )
4936, 42breq12d 4666 . . . . . . . . . . . 12  |-  ( ( J  =  1  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( J  <  K  <->  1  <  0 ) )
5048, 49mtbird 315 . . . . . . . . . . 11  |-  ( ( J  =  1  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  -.  J  <  K )
5150iffalsed 4097 . . . . . . . . . 10  |-  ( ( J  =  1  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  if ( J  <  K ,  J ,  K )  =  K )
5244, 51, 423eqtrd 2660 . . . . . . . . 9  |-  ( ( J  =  1  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  I  =  0 )
5352oveq2d 6666 . . . . . . . 8  |-  ( ( J  =  1  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( R ^r  I )  =  ( R ^r  0 ) )
5443, 53eqtr4d 2659 . . . . . . 7  |-  ( ( J  =  1  /\  K  =  0  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  (
( R ^r  J ) ^r  K )  =  ( R ^r  I ) )
55543exp 1264 . . . . . 6  |-  ( J  =  1  ->  ( K  =  0  ->  ( ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
)  ->  ( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) ) )
5635, 55jaoi 394 . . . . 5  |-  ( ( J  =  0  \/  J  =  1 )  ->  ( K  =  0  ->  ( ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K ) )  -> 
( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) ) )
57 ovex 6678 . . . . . . . . 9  |-  ( R ^r  0 )  e.  _V
58 relexp1g 13766 . . . . . . . . 9  |-  ( ( R ^r  0 )  e.  _V  ->  ( ( R ^r 
0 ) ^r 
1 )  =  ( R ^r  0 ) )
5957, 58mp1i 13 . . . . . . . 8  |-  ( ( J  =  0  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  (
( R ^r 
0 ) ^r 
1 )  =  ( R ^r  0 ) )
60 simp1 1061 . . . . . . . . . 10  |-  ( ( J  =  0  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  J  =  0 )
6160oveq2d 6666 . . . . . . . . 9  |-  ( ( J  =  0  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( R ^r  J )  =  ( R ^r  0 ) )
62 simp2 1062 . . . . . . . . 9  |-  ( ( J  =  0  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  K  =  1 )
6361, 62oveq12d 6668 . . . . . . . 8  |-  ( ( J  =  0  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  (
( R ^r  J ) ^r  K )  =  ( ( R ^r 
0 ) ^r 
1 ) )
64 simp3r 1090 . . . . . . . . . 10  |-  ( ( J  =  0  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  I  =  if ( J  < 
K ,  J ,  K ) )
6560, 62breq12d 4666 . . . . . . . . . . . 12  |-  ( ( J  =  0  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( J  <  K  <->  0  <  1 ) )
6645, 65mpbiri 248 . . . . . . . . . . 11  |-  ( ( J  =  0  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  J  <  K )
6766iftrued 4094 . . . . . . . . . 10  |-  ( ( J  =  0  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  if ( J  <  K ,  J ,  K )  =  J )
6864, 67, 603eqtrd 2660 . . . . . . . . 9  |-  ( ( J  =  0  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  I  =  0 )
6968oveq2d 6666 . . . . . . . 8  |-  ( ( J  =  0  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( R ^r  I )  =  ( R ^r  0 ) )
7059, 63, 693eqtr4d 2666 . . . . . . 7  |-  ( ( J  =  0  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  (
( R ^r  J ) ^r  K )  =  ( R ^r  I ) )
71703exp 1264 . . . . . 6  |-  ( J  =  0  ->  ( K  =  1  ->  ( ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
)  ->  ( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) ) )
72 simp1 1061 . . . . . . . . . . 11  |-  ( ( J  =  1  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  J  =  1 )
7372oveq2d 6666 . . . . . . . . . 10  |-  ( ( J  =  1  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( R ^r  J )  =  ( R ^r  1 ) )
74 simp3l 1089 . . . . . . . . . . 11  |-  ( ( J  =  1  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  R  e.  V )
7574, 39syl 17 . . . . . . . . . 10  |-  ( ( J  =  1  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( R ^r  1 )  =  R )
7673, 75eqtrd 2656 . . . . . . . . 9  |-  ( ( J  =  1  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( R ^r  J )  =  R )
77 simp2 1062 . . . . . . . . 9  |-  ( ( J  =  1  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  K  =  1 )
7876, 77oveq12d 6668 . . . . . . . 8  |-  ( ( J  =  1  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  (
( R ^r  J ) ^r  K )  =  ( R ^r  1 ) )
79 simp3r 1090 . . . . . . . . . 10  |-  ( ( J  =  1  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  I  =  if ( J  < 
K ,  J ,  K ) )
8046ltnri 10146 . . . . . . . . . . . 12  |-  -.  1  <  1
8172, 77breq12d 4666 . . . . . . . . . . . 12  |-  ( ( J  =  1  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( J  <  K  <->  1  <  1 ) )
8280, 81mtbiri 317 . . . . . . . . . . 11  |-  ( ( J  =  1  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  -.  J  <  K )
8382iffalsed 4097 . . . . . . . . . 10  |-  ( ( J  =  1  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  if ( J  <  K ,  J ,  K )  =  K )
8479, 83, 773eqtrd 2660 . . . . . . . . 9  |-  ( ( J  =  1  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  I  =  1 )
8584oveq2d 6666 . . . . . . . 8  |-  ( ( J  =  1  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  ( R ^r  I )  =  ( R ^r  1 ) )
8678, 85eqtr4d 2659 . . . . . . 7  |-  ( ( J  =  1  /\  K  =  1  /\  ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
) )  ->  (
( R ^r  J ) ^r  K )  =  ( R ^r  I ) )
87863exp 1264 . . . . . 6  |-  ( J  =  1  ->  ( K  =  1  ->  ( ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
)  ->  ( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) ) )
8871, 87jaoi 394 . . . . 5  |-  ( ( J  =  0  \/  J  =  1 )  ->  ( K  =  1  ->  ( ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K ) )  -> 
( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) ) )
8956, 88jaod 395 . . . 4  |-  ( ( J  =  0  \/  J  =  1 )  ->  ( ( K  =  0  \/  K  =  1 )  -> 
( ( R  e.  V  /\  I  =  if ( J  < 
K ,  J ,  K ) )  -> 
( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) ) )
9089imp 445 . . 3  |-  ( ( ( J  =  0  \/  J  =  1 )  /\  ( K  =  0  \/  K  =  1 ) )  ->  ( ( R  e.  V  /\  I  =  if ( J  < 
K ,  J ,  K ) )  -> 
( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) )
911, 2, 90syl2an 494 . 2  |-  ( ( J  e.  { 0 ,  1 }  /\  K  e.  { 0 ,  1 } )  ->  ( ( R  e.  V  /\  I  =  if ( J  < 
K ,  J ,  K ) )  -> 
( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) ) )
9291impcom 446 1  |-  ( ( ( R  e.  V  /\  I  =  if ( J  <  K ,  J ,  K )
)  /\  ( J  e.  { 0 ,  1 }  /\  K  e. 
{ 0 ,  1 } ) )  -> 
( ( R ^r  J ) ^r  K )  =  ( R ^r  I ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   ifcif 4086   {cpr 4179   class class class wbr 4653    _I cid 5023   dom cdm 5114   ran crn 5115    |` cres 5116  (class class class)co 6650   0cc0 9936   1c1 9937    < clt 10074   ^r crelexp 13760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-relexp 13761
This theorem is referenced by:  relexp1idm  38006  relexp0idm  38007
  Copyright terms: Public domain W3C validator