MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resqrex Structured version   Visualization version   Unicode version

Theorem resqrex 13991
Description: Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
resqrex  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
Distinct variable group:    x, A

Proof of Theorem resqrex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 0re 10040 . . . . 5  |-  0  e.  RR
2 leloe 10124 . . . . 5  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  ( 0  <  A  \/  0  =  A )
) )
31, 2mpan 706 . . . 4  |-  ( A  e.  RR  ->  (
0  <_  A  <->  ( 0  <  A  \/  0  =  A ) ) )
4 elrp 11834 . . . . . . 7  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
5 01sqrex 13990 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  E. x  e.  RR+  ( x  <_ 
1  /\  ( x ^ 2 )  =  A ) )
6 rprege0 11847 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
76anim1i 592 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
x ^ 2 )  =  A )  -> 
( ( x  e.  RR  /\  0  <_  x )  /\  (
x ^ 2 )  =  A ) )
8 anass 681 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  0  <_  x )  /\  ( x ^ 2 )  =  A )  <-> 
( x  e.  RR  /\  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) ) )
97, 8sylib 208 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  (
x ^ 2 )  =  A )  -> 
( x  e.  RR  /\  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) ) )
109adantrl 752 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  (
x  <_  1  /\  ( x ^ 2 )  =  A ) )  ->  ( x  e.  RR  /\  ( 0  <_  x  /\  (
x ^ 2 )  =  A ) ) )
1110reximi2 3010 . . . . . . . 8  |-  ( E. x  e.  RR+  (
x  <_  1  /\  ( x ^ 2 )  =  A )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
125, 11syl 17 . . . . . . 7  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
134, 12sylanbr 490 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  A  <_  1
)  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
1413exp31 630 . . . . 5  |-  ( A  e.  RR  ->  (
0  <  A  ->  ( A  <_  1  ->  E. x  e.  RR  (
0  <_  x  /\  ( x ^ 2 )  =  A ) ) ) )
15 sq0 12955 . . . . . . . . . 10  |-  ( 0 ^ 2 )  =  0
16 id 22 . . . . . . . . . 10  |-  ( 0  =  A  ->  0  =  A )
1715, 16syl5eq 2668 . . . . . . . . 9  |-  ( 0  =  A  ->  (
0 ^ 2 )  =  A )
18 0le0 11110 . . . . . . . . 9  |-  0  <_  0
1917, 18jctil 560 . . . . . . . 8  |-  ( 0  =  A  ->  (
0  <_  0  /\  ( 0 ^ 2 )  =  A ) )
20 breq2 4657 . . . . . . . . . 10  |-  ( x  =  0  ->  (
0  <_  x  <->  0  <_  0 ) )
21 oveq1 6657 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
x ^ 2 )  =  ( 0 ^ 2 ) )
2221eqeq1d 2624 . . . . . . . . . 10  |-  ( x  =  0  ->  (
( x ^ 2 )  =  A  <->  ( 0 ^ 2 )  =  A ) )
2320, 22anbi12d 747 . . . . . . . . 9  |-  ( x  =  0  ->  (
( 0  <_  x  /\  ( x ^ 2 )  =  A )  <-> 
( 0  <_  0  /\  ( 0 ^ 2 )  =  A ) ) )
2423rspcev 3309 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  ( 0  <_  0  /\  ( 0 ^ 2 )  =  A ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
251, 19, 24sylancr 695 . . . . . . 7  |-  ( 0  =  A  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
2625a1d 25 . . . . . 6  |-  ( 0  =  A  ->  ( A  <_  1  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) ) )
2726a1i 11 . . . . 5  |-  ( A  e.  RR  ->  (
0  =  A  -> 
( A  <_  1  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) ) ) )
2814, 27jaod 395 . . . 4  |-  ( A  e.  RR  ->  (
( 0  <  A  \/  0  =  A
)  ->  ( A  <_  1  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) ) ) )
293, 28sylbid 230 . . 3  |-  ( A  e.  RR  ->  (
0  <_  A  ->  ( A  <_  1  ->  E. x  e.  RR  (
0  <_  x  /\  ( x ^ 2 )  =  A ) ) ) )
3029imp 445 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  <_  1  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) ) )
31 0lt1 10550 . . . . . . . . . 10  |-  0  <  1
32 1re 10039 . . . . . . . . . . 11  |-  1  e.  RR
33 ltletr 10129 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  1  /\  1  <_  A )  ->  0  <  A
) )
341, 32, 33mp3an12 1414 . . . . . . . . . 10  |-  ( A  e.  RR  ->  (
( 0  <  1  /\  1  <_  A )  ->  0  <  A
) )
3531, 34mpani 712 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
1  <_  A  ->  0  <  A ) )
3635imp 445 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <  A )
374biimpri 218 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  RR+ )
3836, 37syldan 487 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  A  e.  RR+ )
3938rpreccld 11882 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1  /  A
)  e.  RR+ )
40 simpr 477 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
1  <_  A )
41 lerec 10906 . . . . . . . . . 10  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( A  e.  RR  /\  0  < 
A ) )  -> 
( 1  <_  A  <->  ( 1  /  A )  <_  ( 1  / 
1 ) ) )
4232, 31, 41mpanl12 718 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  <_  A  <->  ( 1  /  A )  <_  ( 1  / 
1 ) ) )
4336, 42syldan 487 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1  <_  A  <->  ( 1  /  A )  <_  ( 1  / 
1 ) ) )
4440, 43mpbid 222 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1  /  A
)  <_  ( 1  /  1 ) )
45 1div1e1 10717 . . . . . . 7  |-  ( 1  /  1 )  =  1
4644, 45syl6breq 4694 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1  /  A
)  <_  1 )
47 01sqrex 13990 . . . . . 6  |-  ( ( ( 1  /  A
)  e.  RR+  /\  (
1  /  A )  <_  1 )  ->  E. y  e.  RR+  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )
4839, 46, 47syl2anc 693 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  E. y  e.  RR+  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )
49 rpre 11839 . . . . . . . . 9  |-  ( y  e.  RR+  ->  y  e.  RR )
50493ad2ant2 1083 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  y  e.  RR )
51 rpgt0 11844 . . . . . . . . 9  |-  ( y  e.  RR+  ->  0  < 
y )
52513ad2ant2 1083 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  0  <  y )
53 gt0ne0 10493 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  0  <  y )  -> 
y  =/=  0 )
54 rereccl 10743 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  y  =/=  0 )  -> 
( 1  /  y
)  e.  RR )
5553, 54syldan 487 . . . . . . . 8  |-  ( ( y  e.  RR  /\  0  <  y )  -> 
( 1  /  y
)  e.  RR )
5650, 52, 55syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  ( 1  /  y )  e.  RR )
57 recgt0 10867 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  0  <  y )  -> 
0  <  ( 1  /  y ) )
58 ltle 10126 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( 1  /  y
)  e.  RR )  ->  ( 0  < 
( 1  /  y
)  ->  0  <_  ( 1  /  y ) ) )
591, 58mpan 706 . . . . . . . . 9  |-  ( ( 1  /  y )  e.  RR  ->  (
0  <  ( 1  /  y )  -> 
0  <_  ( 1  /  y ) ) )
6055, 57, 59sylc 65 . . . . . . . 8  |-  ( ( y  e.  RR  /\  0  <  y )  -> 
0  <_  ( 1  /  y ) )
6150, 52, 60syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  0  <_  ( 1  /  y ) )
62 recn 10026 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  y  e.  CC )
6362adantr 481 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  0  <  y )  -> 
y  e.  CC )
6463, 53sqrecd 13012 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  0  <  y )  -> 
( ( 1  / 
y ) ^ 2 )  =  ( 1  /  ( y ^
2 ) ) )
6550, 52, 64syl2anc 693 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  ( (
1  /  y ) ^ 2 )  =  ( 1  /  (
y ^ 2 ) ) )
66 simp3r 1090 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  ( y ^ 2 )  =  ( 1  /  A
) )
6766oveq2d 6666 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  ( 1  /  ( y ^
2 ) )  =  ( 1  /  (
1  /  A ) ) )
68 gt0ne0 10493 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  =/=  0 )
6936, 68syldan 487 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  A  =/=  0 )
70 recn 10026 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  e.  CC )
71 recrec 10722 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( 1  /  (
1  /  A ) )  =  A )
7270, 71sylan 488 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( 1  /  (
1  /  A ) )  =  A )
7369, 72syldan 487 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1  /  (
1  /  A ) )  =  A )
74733ad2ant1 1082 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  ( 1  /  ( 1  /  A ) )  =  A )
7565, 67, 743eqtrd 2660 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  ( (
1  /  y ) ^ 2 )  =  A )
76 breq2 4657 . . . . . . . . 9  |-  ( x  =  ( 1  / 
y )  ->  (
0  <_  x  <->  0  <_  ( 1  /  y ) ) )
77 oveq1 6657 . . . . . . . . . 10  |-  ( x  =  ( 1  / 
y )  ->  (
x ^ 2 )  =  ( ( 1  /  y ) ^
2 ) )
7877eqeq1d 2624 . . . . . . . . 9  |-  ( x  =  ( 1  / 
y )  ->  (
( x ^ 2 )  =  A  <->  ( (
1  /  y ) ^ 2 )  =  A ) )
7976, 78anbi12d 747 . . . . . . . 8  |-  ( x  =  ( 1  / 
y )  ->  (
( 0  <_  x  /\  ( x ^ 2 )  =  A )  <-> 
( 0  <_  (
1  /  y )  /\  ( ( 1  /  y ) ^
2 )  =  A ) ) )
8079rspcev 3309 . . . . . . 7  |-  ( ( ( 1  /  y
)  e.  RR  /\  ( 0  <_  (
1  /  y )  /\  ( ( 1  /  y ) ^
2 )  =  A ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
8156, 61, 75, 80syl12anc 1324 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  y  e.  RR+  /\  (
y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
8281rexlimdv3a 3033 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( E. y  e.  RR+  ( y  <_  1  /\  ( y ^ 2 )  =  ( 1  /  A ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) ) )
8348, 82mpd 15 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
8483ex 450 . . 3  |-  ( A  e.  RR  ->  (
1  <_  A  ->  E. x  e.  RR  (
0  <_  x  /\  ( x ^ 2 )  =  A ) ) )
8584adantr 481 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1  <_  A  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) ) )
86 simpl 473 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  RR )
87 letric 10137 . . 3  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  <_  1  \/  1  <_  A ) )
8886, 32, 87sylancl 694 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  <_  1  \/  1  <_  A ) )
8930, 85, 88mpjaod 396 1  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    <_ cle 10075    / cdiv 10684   2c2 11070   RR+crp 11832   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861
This theorem is referenced by:  resqreu  13993  resqrtcl  13994
  Copyright terms: Public domain W3C validator