MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrmul Structured version   Visualization version   Unicode version

Theorem resspsrmul 19417
Description: A restricted power series algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s  |-  S  =  ( I mPwSer  R )
resspsr.h  |-  H  =  ( Rs  T )
resspsr.u  |-  U  =  ( I mPwSer  H )
resspsr.b  |-  B  =  ( Base `  U
)
resspsr.p  |-  P  =  ( Ss  B )
resspsr.2  |-  ( ph  ->  T  e.  (SubRing `  R
) )
Assertion
Ref Expression
resspsrmul  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X ( .r
`  U ) Y )  =  ( X ( .r `  P
) Y ) )

Proof of Theorem resspsrmul
Dummy variables  x  k  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmpsr 19361 . . . . . . . . . 10  |-  Rel  dom mPwSer
2 resspsr.u . . . . . . . . . 10  |-  U  =  ( I mPwSer  H )
3 resspsr.b . . . . . . . . . 10  |-  B  =  ( Base `  U
)
41, 2, 3elbasov 15921 . . . . . . . . 9  |-  ( X  e.  B  ->  (
I  e.  _V  /\  H  e.  _V )
)
54ad2antrl 764 . . . . . . . 8  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( I  e.  _V  /\  H  e.  _V )
)
65simpld 475 . . . . . . 7  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  I  e.  _V )
7 eqid 2622 . . . . . . . 8  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
87psrbaglefi 19372 . . . . . . 7  |-  ( ( I  e.  _V  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  ->  { y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |  y  oR  <_  k }  e.  Fin )
96, 8sylan 488 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  { y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |  y  oR  <_  k }  e.  Fin )
10 resspsr.2 . . . . . . . . 9  |-  ( ph  ->  T  e.  (SubRing `  R
) )
11 subrgsubg 18786 . . . . . . . . 9  |-  ( T  e.  (SubRing `  R
)  ->  T  e.  (SubGrp `  R ) )
1210, 11syl 17 . . . . . . . 8  |-  ( ph  ->  T  e.  (SubGrp `  R ) )
13 subgsubm 17616 . . . . . . . 8  |-  ( T  e.  (SubGrp `  R
)  ->  T  e.  (SubMnd `  R ) )
1412, 13syl 17 . . . . . . 7  |-  ( ph  ->  T  e.  (SubMnd `  R ) )
1514ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  T  e.  (SubMnd `  R ) )
1610ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  T  e.  (SubRing `  R ) )
17 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  H )  =  (
Base `  H )
18 simprl 794 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  X  e.  B )
192, 17, 7, 3, 18psrelbas 19379 . . . . . . . . . . 11  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  X : { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } --> ( Base `  H ) )
2019adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  X : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  H
) )
21 elrabi 3359 . . . . . . . . . 10  |-  ( x  e.  { y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |  y  oR  <_  k }  ->  x  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )
22 ffvelrn 6357 . . . . . . . . . 10  |-  ( ( X : { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin } --> ( Base `  H )  /\  x  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( X `  x )  e.  ( Base `  H
) )
2320, 21, 22syl2an 494 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( X `  x )  e.  (
Base `  H )
)
24 resspsr.h . . . . . . . . . . 11  |-  H  =  ( Rs  T )
2524subrgbas 18789 . . . . . . . . . 10  |-  ( T  e.  (SubRing `  R
)  ->  T  =  ( Base `  H )
)
2616, 25syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  T  =  (
Base `  H )
)
2723, 26eleqtrrd 2704 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( X `  x )  e.  T
)
28 simprr 796 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  Y  e.  B )
292, 17, 7, 3, 28psrelbas 19379 . . . . . . . . . . 11  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  Y : { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } --> ( Base `  H ) )
3029ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  Y : {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } --> ( Base `  H
) )
31 ssrab2 3687 . . . . . . . . . . 11  |-  { y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  C_  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }
326ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  I  e.  _V )
33 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )
34 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k } )
35 eqid 2622 . . . . . . . . . . . . 13  |-  { y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  =  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }
367, 35psrbagconcl 19373 . . . . . . . . . . . 12  |-  ( ( I  e.  _V  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  /\  x  e.  { y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |  y  oR  <_  k } )  ->  ( k  oF  -  x
)  e.  { y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k } )
3732, 33, 34, 36syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( k  oF  -  x )  e.  { y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |  y  oR  <_  k } )
3831, 37sseldi 3601 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( k  oF  -  x )  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )
3930, 38ffvelrnd 6360 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( Y `  ( k  oF  -  x ) )  e.  ( Base `  H
) )
4039, 26eleqtrrd 2704 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( Y `  ( k  oF  -  x ) )  e.  T )
41 eqid 2622 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
4241subrgmcl 18792 . . . . . . . 8  |-  ( ( T  e.  (SubRing `  R
)  /\  ( X `  x )  e.  T  /\  ( Y `  (
k  oF  -  x ) )  e.  T )  ->  (
( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) )  e.  T
)
4316, 27, 40, 42syl3anc 1326 . . . . . . 7  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) )  e.  T )
44 eqid 2622 . . . . . . 7  |-  ( x  e.  { y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |  y  oR  <_  k } 
|->  ( ( X `  x ) ( .r
`  R ) ( Y `  ( k  oF  -  x
) ) ) )  =  ( x  e. 
{ y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k }  |->  ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) ) )
4543, 44fmptd 6385 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  ( x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k }  |->  ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) ) ) : { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } --> T )
469, 15, 45, 24gsumsubm 17373 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  ( R  gsumg  ( x  e.  { y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) )  =  ( H  gsumg  ( x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) ) )
4724, 41ressmulr 16006 . . . . . . . . . 10  |-  ( T  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  H ) )
4810, 47syl 17 . . . . . . . . 9  |-  ( ph  ->  ( .r `  R
)  =  ( .r
`  H ) )
4948ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( .r `  R )  =  ( .r `  H ) )
5049oveqd 6667 . . . . . . 7  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) )  =  ( ( X `
 x ) ( .r `  H ) ( Y `  (
k  oF  -  x ) ) ) )
5150mpteq2dva 4744 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  ( x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k }  |->  ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) ) )  =  ( x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  H
) ( Y `  ( k  oF  -  x ) ) ) ) )
5251oveq2d 6666 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  ( H  gsumg  ( x  e.  { y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) )  =  ( H  gsumg  ( x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  H
) ( Y `  ( k  oF  -  x ) ) ) ) ) )
5346, 52eqtrd 2656 . . . 4  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  ( R  gsumg  ( x  e.  { y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) )  =  ( H  gsumg  ( x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  H
) ( Y `  ( k  oF  -  x ) ) ) ) ) )
5453mpteq2dva 4744 . . 3  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  ( R  gsumg  ( x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) ) )  =  ( k  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  ( H 
gsumg  ( x  e.  { y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  H
) ( Y `  ( k  oF  -  x ) ) ) ) ) ) )
55 resspsr.s . . . 4  |-  S  =  ( I mPwSer  R )
56 eqid 2622 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
57 eqid 2622 . . . 4  |-  ( .r
`  S )  =  ( .r `  S
)
58 fvex 6201 . . . . . . . 8  |-  ( Base `  R )  e.  _V
5910, 25syl 17 . . . . . . . . 9  |-  ( ph  ->  T  =  ( Base `  H ) )
60 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
6160subrgss 18781 . . . . . . . . . 10  |-  ( T  e.  (SubRing `  R
)  ->  T  C_  ( Base `  R ) )
6210, 61syl 17 . . . . . . . . 9  |-  ( ph  ->  T  C_  ( Base `  R ) )
6359, 62eqsstr3d 3640 . . . . . . . 8  |-  ( ph  ->  ( Base `  H
)  C_  ( Base `  R ) )
64 mapss 7900 . . . . . . . 8  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  H )  C_  ( Base `  R
) )  ->  (
( Base `  H )  ^m  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  C_  (
( Base `  R )  ^m  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } ) )
6558, 63, 64sylancr 695 . . . . . . 7  |-  ( ph  ->  ( ( Base `  H
)  ^m  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } ) 
C_  ( ( Base `  R )  ^m  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } ) )
6665adantr 481 . . . . . 6  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( ( Base `  H
)  ^m  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } ) 
C_  ( ( Base `  R )  ^m  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } ) )
672, 17, 7, 3, 6psrbas 19378 . . . . . 6  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  B  =  ( ( Base `  H )  ^m  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } ) )
6855, 60, 7, 56, 6psrbas 19378 . . . . . 6  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( Base `  S )  =  ( ( Base `  R )  ^m  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } ) )
6966, 67, 683sstr4d 3648 . . . . 5  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  B  C_  ( Base `  S
) )
7069, 18sseldd 3604 . . . 4  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  X  e.  ( Base `  S ) )
7169, 28sseldd 3604 . . . 4  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  Y  e.  ( Base `  S ) )
7255, 56, 41, 57, 7, 70, 71psrmulfval 19385 . . 3  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X ( .r
`  S ) Y )  =  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) ) ) )
73 eqid 2622 . . . 4  |-  ( .r
`  H )  =  ( .r `  H
)
74 eqid 2622 . . . 4  |-  ( .r
`  U )  =  ( .r `  U
)
752, 3, 73, 74, 7, 18, 28psrmulfval 19385 . . 3  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X ( .r
`  U ) Y )  =  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  ( H  gsumg  ( x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  H
) ( Y `  ( k  oF  -  x ) ) ) ) ) ) )
7654, 72, 753eqtr4rd 2667 . 2  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X ( .r
`  U ) Y )  =  ( X ( .r `  S
) Y ) )
77 fvex 6201 . . . . 5  |-  ( Base `  U )  e.  _V
783, 77eqeltri 2697 . . . 4  |-  B  e. 
_V
79 resspsr.p . . . . 5  |-  P  =  ( Ss  B )
8079, 57ressmulr 16006 . . . 4  |-  ( B  e.  _V  ->  ( .r `  S )  =  ( .r `  P
) )
8178, 80mp1i 13 . . 3  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( .r `  S
)  =  ( .r
`  P ) )
8281oveqd 6667 . 2  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X ( .r
`  S ) Y )  =  ( X ( .r `  P
) Y ) )
8376, 82eqtrd 2656 1  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X ( .r
`  U ) Y )  =  ( X ( .r `  P
) Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    oRcofr 6896    ^m cmap 7857   Fincfn 7955    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   Basecbs 15857   ↾s cress 15858   .rcmulr 15942    gsumg cgsu 16101  SubMndcsubmnd 17334  SubGrpcsubg 17588  SubRingcsubrg 18776   mPwSer cmps 19351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-mgp 18490  df-ring 18549  df-subrg 18778  df-psr 19356
This theorem is referenced by:  subrgpsr  19419  ressmplmul  19458
  Copyright terms: Public domain W3C validator