MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglefi Structured version   Visualization version   Unicode version

Theorem psrbaglefi 19372
Description: There are finitely many bags dominated by a given bag. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 25-Jan-2015.)
Hypothesis
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
Assertion
Ref Expression
psrbaglefi  |-  ( ( I  e.  V  /\  F  e.  D )  ->  { y  e.  D  |  y  oR 
<_  F }  e.  Fin )
Distinct variable groups:    y, f, F    y, V    f, I,
y    y, D
Allowed substitution hints:    D( f)    V( f)

Proof of Theorem psrbaglefi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-rab 2921 . . 3  |-  { y  e.  D  |  y  oR  <_  F }  =  { y  |  ( y  e.  D  /\  y  oR  <_  F ) }
2 psrbag.d . . . . . . . . 9  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
32psrbag 19364 . . . . . . . 8  |-  ( I  e.  V  ->  (
y  e.  D  <->  ( y : I --> NN0  /\  ( `' y " NN )  e.  Fin )
) )
43adantr 481 . . . . . . 7  |-  ( ( I  e.  V  /\  F  e.  D )  ->  ( y  e.  D  <->  ( y : I --> NN0  /\  ( `' y " NN )  e.  Fin )
) )
5 simpl 473 . . . . . . 7  |-  ( ( y : I --> NN0  /\  ( `' y " NN )  e.  Fin )  ->  y : I --> NN0 )
64, 5syl6bi 243 . . . . . 6  |-  ( ( I  e.  V  /\  F  e.  D )  ->  ( y  e.  D  ->  y : I --> NN0 )
)
76adantrd 484 . . . . 5  |-  ( ( I  e.  V  /\  F  e.  D )  ->  ( ( y  e.  D  /\  y  oR  <_  F )  ->  y : I --> NN0 )
)
8 ss2ixp 7921 . . . . . . . . 9  |-  ( A. x  e.  I  (
0 ... ( F `  x ) )  C_  NN0 
->  X_ x  e.  I 
( 0 ... ( F `  x )
)  C_  X_ x  e.  I  NN0 )
9 fz0ssnn0 12435 . . . . . . . . . 10  |-  ( 0 ... ( F `  x ) )  C_  NN0
109a1i 11 . . . . . . . . 9  |-  ( x  e.  I  ->  (
0 ... ( F `  x ) )  C_  NN0 )
118, 10mprg 2926 . . . . . . . 8  |-  X_ x  e.  I  ( 0 ... ( F `  x ) )  C_  X_ x  e.  I  NN0
1211sseli 3599 . . . . . . 7  |-  ( y  e.  X_ x  e.  I 
( 0 ... ( F `  x )
)  ->  y  e.  X_ x  e.  I  NN0 )
13 vex 3203 . . . . . . . 8  |-  y  e. 
_V
1413elixpconst 7916 . . . . . . 7  |-  ( y  e.  X_ x  e.  I  NN0 
<->  y : I --> NN0 )
1512, 14sylib 208 . . . . . 6  |-  ( y  e.  X_ x  e.  I 
( 0 ... ( F `  x )
)  ->  y :
I --> NN0 )
1615a1i 11 . . . . 5  |-  ( ( I  e.  V  /\  F  e.  D )  ->  ( y  e.  X_ x  e.  I  (
0 ... ( F `  x ) )  -> 
y : I --> NN0 )
)
17 ffn 6045 . . . . . . . . 9  |-  ( y : I --> NN0  ->  y  Fn  I )
1817adantl 482 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  y :
I --> NN0 )  ->  y  Fn  I )
1913elixp 7915 . . . . . . . . 9  |-  ( y  e.  X_ x  e.  I 
( 0 ... ( F `  x )
)  <->  ( y  Fn  I  /\  A. x  e.  I  ( y `  x )  e.  ( 0 ... ( F `
 x ) ) ) )
2019baib 944 . . . . . . . 8  |-  ( y  Fn  I  ->  (
y  e.  X_ x  e.  I  ( 0 ... ( F `  x ) )  <->  A. x  e.  I  ( y `  x )  e.  ( 0 ... ( F `
 x ) ) ) )
2118, 20syl 17 . . . . . . 7  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  y :
I --> NN0 )  ->  (
y  e.  X_ x  e.  I  ( 0 ... ( F `  x ) )  <->  A. x  e.  I  ( y `  x )  e.  ( 0 ... ( F `
 x ) ) ) )
22 ffvelrn 6357 . . . . . . . . . . . 12  |-  ( ( y : I --> NN0  /\  x  e.  I )  ->  ( y `  x
)  e.  NN0 )
2322adantll 750 . . . . . . . . . . 11  |-  ( ( ( ( I  e.  V  /\  F  e.  D )  /\  y : I --> NN0 )  /\  x  e.  I
)  ->  ( y `  x )  e.  NN0 )
24 nn0uz 11722 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
2523, 24syl6eleq 2711 . . . . . . . . . 10  |-  ( ( ( ( I  e.  V  /\  F  e.  D )  /\  y : I --> NN0 )  /\  x  e.  I
)  ->  ( y `  x )  e.  (
ZZ>= `  0 ) )
262psrbagf 19365 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  F  e.  D )  ->  F : I --> NN0 )
2726adantr 481 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  y :
I --> NN0 )  ->  F : I --> NN0 )
2827ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ( I  e.  V  /\  F  e.  D )  /\  y : I --> NN0 )  /\  x  e.  I
)  ->  ( F `  x )  e.  NN0 )
2928nn0zd 11480 . . . . . . . . . 10  |-  ( ( ( ( I  e.  V  /\  F  e.  D )  /\  y : I --> NN0 )  /\  x  e.  I
)  ->  ( F `  x )  e.  ZZ )
30 elfz5 12334 . . . . . . . . . 10  |-  ( ( ( y `  x
)  e.  ( ZZ>= ` 
0 )  /\  ( F `  x )  e.  ZZ )  ->  (
( y `  x
)  e.  ( 0 ... ( F `  x ) )  <->  ( y `  x )  <_  ( F `  x )
) )
3125, 29, 30syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( I  e.  V  /\  F  e.  D )  /\  y : I --> NN0 )  /\  x  e.  I
)  ->  ( (
y `  x )  e.  ( 0 ... ( F `  x )
)  <->  ( y `  x )  <_  ( F `  x )
) )
3231ralbidva 2985 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  y :
I --> NN0 )  ->  ( A. x  e.  I 
( y `  x
)  e.  ( 0 ... ( F `  x ) )  <->  A. x  e.  I  ( y `  x )  <_  ( F `  x )
) )
3327ffnd 6046 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  y :
I --> NN0 )  ->  F  Fn  I )
34 simpll 790 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  y :
I --> NN0 )  ->  I  e.  V )
35 inidm 3822 . . . . . . . . 9  |-  ( I  i^i  I )  =  I
36 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ( I  e.  V  /\  F  e.  D )  /\  y : I --> NN0 )  /\  x  e.  I
)  ->  ( y `  x )  =  ( y `  x ) )
37 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ( I  e.  V  /\  F  e.  D )  /\  y : I --> NN0 )  /\  x  e.  I
)  ->  ( F `  x )  =  ( F `  x ) )
3818, 33, 34, 34, 35, 36, 37ofrfval 6905 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  y :
I --> NN0 )  ->  (
y  oR  <_  F 
<-> 
A. x  e.  I 
( y `  x
)  <_  ( F `  x ) ) )
3932, 38bitr4d 271 . . . . . . 7  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  y :
I --> NN0 )  ->  ( A. x  e.  I 
( y `  x
)  e.  ( 0 ... ( F `  x ) )  <->  y  oR  <_  F ) )
402psrbaglecl 19369 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  y : I --> NN0  /\  y  oR  <_  F
) )  ->  y  e.  D )
41403exp2 1285 . . . . . . . . 9  |-  ( I  e.  V  ->  ( F  e.  D  ->  ( y : I --> NN0  ->  ( y  oR  <_  F  ->  y  e.  D
) ) ) )
4241imp31 448 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  y :
I --> NN0 )  ->  (
y  oR  <_  F  ->  y  e.  D
) )
4342pm4.71rd 667 . . . . . . 7  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  y :
I --> NN0 )  ->  (
y  oR  <_  F 
<->  ( y  e.  D  /\  y  oR 
<_  F ) ) )
4421, 39, 433bitrrd 295 . . . . . 6  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  y :
I --> NN0 )  ->  (
( y  e.  D  /\  y  oR 
<_  F )  <->  y  e.  X_ x  e.  I  ( 0 ... ( F `
 x ) ) ) )
4544ex 450 . . . . 5  |-  ( ( I  e.  V  /\  F  e.  D )  ->  ( y : I --> NN0  ->  ( (
y  e.  D  /\  y  oR  <_  F
)  <->  y  e.  X_ x  e.  I  (
0 ... ( F `  x ) ) ) ) )
467, 16, 45pm5.21ndd 369 . . . 4  |-  ( ( I  e.  V  /\  F  e.  D )  ->  ( ( y  e.  D  /\  y  oR  <_  F )  <->  y  e.  X_ x  e.  I 
( 0 ... ( F `  x )
) ) )
4746abbi1dv 2743 . . 3  |-  ( ( I  e.  V  /\  F  e.  D )  ->  { y  |  ( y  e.  D  /\  y  oR  <_  F
) }  =  X_ x  e.  I  (
0 ... ( F `  x ) ) )
481, 47syl5eq 2668 . 2  |-  ( ( I  e.  V  /\  F  e.  D )  ->  { y  e.  D  |  y  oR 
<_  F }  =  X_ x  e.  I  (
0 ... ( F `  x ) ) )
49 simpr 477 . . . . 5  |-  ( ( I  e.  V  /\  F  e.  D )  ->  F  e.  D )
50 cnveq 5296 . . . . . . . 8  |-  ( f  =  F  ->  `' f  =  `' F
)
5150imaeq1d 5465 . . . . . . 7  |-  ( f  =  F  ->  ( `' f " NN )  =  ( `' F " NN ) )
5251eleq1d 2686 . . . . . 6  |-  ( f  =  F  ->  (
( `' f " NN )  e.  Fin  <->  ( `' F " NN )  e.  Fin ) )
5352, 2elrab2 3366 . . . . 5  |-  ( F  e.  D  <->  ( F  e.  ( NN0  ^m  I
)  /\  ( `' F " NN )  e. 
Fin ) )
5449, 53sylib 208 . . . 4  |-  ( ( I  e.  V  /\  F  e.  D )  ->  ( F  e.  ( NN0  ^m  I )  /\  ( `' F " NN )  e.  Fin ) )
5554simprd 479 . . 3  |-  ( ( I  e.  V  /\  F  e.  D )  ->  ( `' F " NN )  e.  Fin )
56 fzfid 12772 . . 3  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  x  e.  I )  ->  (
0 ... ( F `  x ) )  e. 
Fin )
57 simpl 473 . . . . . . . . 9  |-  ( ( I  e.  V  /\  F  e.  D )  ->  I  e.  V )
5857, 26jca 554 . . . . . . . 8  |-  ( ( I  e.  V  /\  F  e.  D )  ->  ( I  e.  V  /\  F : I --> NN0 )
)
59 frnnn0supp 11349 . . . . . . . 8  |-  ( ( I  e.  V  /\  F : I --> NN0 )  ->  ( F supp  0 )  =  ( `' F " NN ) )
60 eqimss 3657 . . . . . . . 8  |-  ( ( F supp  0 )  =  ( `' F " NN )  ->  ( F supp  0 )  C_  ( `' F " NN ) )
6158, 59, 603syl 18 . . . . . . 7  |-  ( ( I  e.  V  /\  F  e.  D )  ->  ( F supp  0 ) 
C_  ( `' F " NN ) )
62 c0ex 10034 . . . . . . . 8  |-  0  e.  _V
6362a1i 11 . . . . . . 7  |-  ( ( I  e.  V  /\  F  e.  D )  ->  0  e.  _V )
6426, 61, 57, 63suppssr 7326 . . . . . 6  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  x  e.  ( I  \  ( `' F " NN ) ) )  ->  ( F `  x )  =  0 )
6564oveq2d 6666 . . . . 5  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  x  e.  ( I  \  ( `' F " NN ) ) )  ->  (
0 ... ( F `  x ) )  =  ( 0 ... 0
) )
66 fz0sn 12439 . . . . 5  |-  ( 0 ... 0 )  =  { 0 }
6765, 66syl6eq 2672 . . . 4  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  x  e.  ( I  \  ( `' F " NN ) ) )  ->  (
0 ... ( F `  x ) )  =  { 0 } )
68 eqimss 3657 . . . 4  |-  ( ( 0 ... ( F `
 x ) )  =  { 0 }  ->  ( 0 ... ( F `  x
) )  C_  { 0 } )
6967, 68syl 17 . . 3  |-  ( ( ( I  e.  V  /\  F  e.  D
)  /\  x  e.  ( I  \  ( `' F " NN ) ) )  ->  (
0 ... ( F `  x ) )  C_  { 0 } )
7055, 56, 69ixpfi2 8264 . 2  |-  ( ( I  e.  V  /\  F  e.  D )  -> 
X_ x  e.  I 
( 0 ... ( F `  x )
)  e.  Fin )
7148, 70eqeltrd 2701 1  |-  ( ( I  e.  V  /\  F  e.  D )  ->  { y  e.  D  |  y  oR 
<_  F }  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oRcofr 6896   supp csupp 7295    ^m cmap 7857   X_cixp 7908   Fincfn 7955   0cc0 9936    <_ cle 10075   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  gsumbagdiag  19376  psrass1lem  19377  psrmulcllem  19387  psrass1  19405  psrdi  19406  psrdir  19407  psrass23l  19408  psrcom  19409  psrass23  19410  resspsrmul  19417  mplsubrglem  19439  mplmonmul  19464  psropprmul  19608
  Copyright terms: Public domain W3C validator