MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimuni Structured version   Visualization version   Unicode version

Theorem rlimuni 14281
Description: A real function whose domain is unbounded above converges to at most one limit. (Contributed by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
rlimuni.1  |-  ( ph  ->  F : A --> CC )
rlimuni.2  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
rlimuni.3  |-  ( ph  ->  F  ~~> r  B )
rlimuni.4  |-  ( ph  ->  F  ~~> r  C )
Assertion
Ref Expression
rlimuni  |-  ( ph  ->  B  =  C )

Proof of Theorem rlimuni
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimuni.3 . . . . . . . . . . . 12  |-  ( ph  ->  F  ~~> r  B )
2 rlimcl 14234 . . . . . . . . . . . 12  |-  ( F  ~~> r  B  ->  B  e.  CC )
31, 2syl 17 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
43ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  B  e.  CC )
5 rlimuni.4 . . . . . . . . . . . 12  |-  ( ph  ->  F  ~~> r  C )
6 rlimcl 14234 . . . . . . . . . . . 12  |-  ( F  ~~> r  C  ->  C  e.  CC )
75, 6syl 17 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  CC )
87ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  C  e.  CC )
94, 8subcld 10392 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  ( B  -  C )  e.  CC )
109abscld 14175 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  ( abs `  ( B  -  C ) )  e.  RR )
1110ltnrd 10171 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  -.  ( abs `  ( B  -  C ) )  <  ( abs `  ( B  -  C )
) )
12 rlimuni.1 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : A --> CC )
1312ffvelrnda 6359 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  e.  CC )
1413adantlr 751 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  ( F `  k )  e.  CC )
1514, 4abssubd 14192 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  ( abs `  ( ( F `
 k )  -  B ) )  =  ( abs `  ( B  -  ( F `  k ) ) ) )
1615breq1d 4663 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  <->  ( abs `  ( B  -  ( F `  k )
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) ) )
1716anbi1d 741 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) )  <->  ( ( abs `  ( B  -  ( F `  k ) ) )  <  (
( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) )
18 abs3lem 14078 . . . . . . . . . . . 12  |-  ( ( ( B  e.  CC  /\  C  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( B  -  C
) )  e.  RR ) )  ->  (
( ( abs `  ( B  -  ( F `  k ) ) )  <  ( ( abs `  ( B  -  C
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  C
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) )  ->  ( abs `  ( B  -  C
) )  <  ( abs `  ( B  -  C ) ) ) )
194, 8, 14, 10, 18syl22anc 1327 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( ( abs `  ( B  -  ( F `  k ) ) )  <  ( ( abs `  ( B  -  C
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  C
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) )  ->  ( abs `  ( B  -  C
) )  <  ( abs `  ( B  -  C ) ) ) )
2017, 19sylbid 230 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) )  ->  ( abs `  ( B  -  C ) )  < 
( abs `  ( B  -  C )
) ) )
2120imim2d 57 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) )  -> 
( j  <_  k  ->  ( abs `  ( B  -  C )
)  <  ( abs `  ( B  -  C
) ) ) ) )
2221com23 86 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
j  <_  k  ->  ( ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) )  -> 
( abs `  ( B  -  C )
)  <  ( abs `  ( B  -  C
) ) ) ) )
2322impd 447 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  (
( j  <_  k  /\  ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) )  ->  ( abs `  ( B  -  C )
)  <  ( abs `  ( B  -  C
) ) ) )
2411, 23mtod 189 . . . . . 6  |-  ( ( ( ph  /\  j  e.  RR )  /\  k  e.  A )  ->  -.  ( j  <_  k  /\  ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) ) )
2524nrexdv 3001 . . . . 5  |-  ( (
ph  /\  j  e.  RR )  ->  -.  E. k  e.  A  (
j  <_  k  /\  ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) ) )
26 r19.29r 3073 . . . . 5  |-  ( ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  (
j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) )  ->  E. k  e.  A  ( j  <_  k  /\  ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) ) )
2725, 26nsyl 135 . . . 4  |-  ( (
ph  /\  j  e.  RR )  ->  -.  ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  (
j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) ) )
2827nrexdv 3001 . . 3  |-  ( ph  ->  -.  E. j  e.  RR  ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) ) )
29 rlimuni.2 . . . . 5  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
30 fdm 6051 . . . . . . . . 9  |-  ( F : A --> CC  ->  dom 
F  =  A )
3112, 30syl 17 . . . . . . . 8  |-  ( ph  ->  dom  F  =  A )
32 rlimss 14233 . . . . . . . . 9  |-  ( F  ~~> r  B  ->  dom  F 
C_  RR )
331, 32syl 17 . . . . . . . 8  |-  ( ph  ->  dom  F  C_  RR )
3431, 33eqsstr3d 3640 . . . . . . 7  |-  ( ph  ->  A  C_  RR )
35 ressxr 10083 . . . . . . 7  |-  RR  C_  RR*
3634, 35syl6ss 3615 . . . . . 6  |-  ( ph  ->  A  C_  RR* )
37 supxrunb1 12149 . . . . . 6  |-  ( A 
C_  RR*  ->  ( A. j  e.  RR  E. k  e.  A  j  <_  k  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
3836, 37syl 17 . . . . 5  |-  ( ph  ->  ( A. j  e.  RR  E. k  e.  A  j  <_  k  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
3929, 38mpbird 247 . . . 4  |-  ( ph  ->  A. j  e.  RR  E. k  e.  A  j  <_  k )
40 r19.29 3072 . . . . 5  |-  ( ( A. j  e.  RR  E. k  e.  A  j  <_  k  /\  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) )  ->  E. j  e.  RR  ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) ) )
4140ex 450 . . . 4  |-  ( A. j  e.  RR  E. k  e.  A  j  <_  k  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) )  ->  E. j  e.  RR  ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) ) ) )
4239, 41syl 17 . . 3  |-  ( ph  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) )  ->  E. j  e.  RR  ( E. k  e.  A  j  <_  k  /\  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) ) ) )
4328, 42mtod 189 . 2  |-  ( ph  ->  -.  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) )
4412adantr 481 . . . . . . 7  |-  ( (
ph  /\  B  =/=  C )  ->  F : A
--> CC )
45 ffvelrn 6357 . . . . . . . 8  |-  ( ( F : A --> CC  /\  k  e.  A )  ->  ( F `  k
)  e.  CC )
4645ralrimiva 2966 . . . . . . 7  |-  ( F : A --> CC  ->  A. k  e.  A  ( F `  k )  e.  CC )
4744, 46syl 17 . . . . . 6  |-  ( (
ph  /\  B  =/=  C )  ->  A. k  e.  A  ( F `  k )  e.  CC )
483adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  C )  ->  B  e.  CC )
497adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  C )  ->  C  e.  CC )
5048, 49subcld 10392 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  C )  ->  ( B  -  C )  e.  CC )
51 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  C )  ->  B  =/=  C )
5248, 49, 51subne0d 10401 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  C )  ->  ( B  -  C )  =/=  0
)
5350, 52absrpcld 14187 . . . . . . 7  |-  ( (
ph  /\  B  =/=  C )  ->  ( abs `  ( B  -  C
) )  e.  RR+ )
5453rphalfcld 11884 . . . . . 6  |-  ( (
ph  /\  B  =/=  C )  ->  ( ( abs `  ( B  -  C ) )  / 
2 )  e.  RR+ )
5544feqmptd 6249 . . . . . . 7  |-  ( (
ph  /\  B  =/=  C )  ->  F  =  ( k  e.  A  |->  ( F `  k
) ) )
561adantr 481 . . . . . . 7  |-  ( (
ph  /\  B  =/=  C )  ->  F  ~~> r  B
)
5755, 56eqbrtrrd 4677 . . . . . 6  |-  ( (
ph  /\  B  =/=  C )  ->  ( k  e.  A  |->  ( F `
 k ) )  ~~> r  B )
5847, 54, 57rlimi 14244 . . . . 5  |-  ( (
ph  /\  B  =/=  C )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) ) )
595adantr 481 . . . . . . 7  |-  ( (
ph  /\  B  =/=  C )  ->  F  ~~> r  C
)
6055, 59eqbrtrrd 4677 . . . . . 6  |-  ( (
ph  /\  B  =/=  C )  ->  ( k  e.  A  |->  ( F `
 k ) )  ~~> r  C )
6147, 54, 60rlimi 14244 . . . . 5  |-  ( (
ph  /\  B  =/=  C )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  C
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) ) )
6234adantr 481 . . . . . 6  |-  ( (
ph  /\  B  =/=  C )  ->  A  C_  RR )
63 rexanre 14086 . . . . . 6  |-  ( A 
C_  RR  ->  ( E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) )  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  C
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) ) ) ) )
6462, 63syl 17 . . . . 5  |-  ( (
ph  /\  B  =/=  C )  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) )  <->  ( E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  C
) )  <  (
( abs `  ( B  -  C )
)  /  2 ) ) ) ) )
6558, 61, 64mpbir2and 957 . . . 4  |-  ( (
ph  /\  B  =/=  C )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) ) )
6665ex 450 . . 3  |-  ( ph  ->  ( B  =/=  C  ->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( B  -  C ) )  /  2 )  /\  ( abs `  ( ( F `  k )  -  C ) )  <  ( ( abs `  ( B  -  C
) )  /  2
) ) ) ) )
6766necon1bd 2812 . 2  |-  ( ph  ->  ( -.  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( B  -  C )
)  /  2 )  /\  ( abs `  (
( F `  k
)  -  C ) )  <  ( ( abs `  ( B  -  C ) )  /  2 ) ) )  ->  B  =  C ) )
6843, 67mpd 15 1  |-  ( ph  ->  B  =  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   abscabs 13974    ~~> r crli 14216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-rlim 14220
This theorem is referenced by:  rlimdm  14282  rlimdmafv  41257
  Copyright terms: Public domain W3C validator