Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcifuestrc Structured version   Visualization version   Unicode version

Theorem rngcifuestrc 41997
Description: The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020.)
Hypotheses
Ref Expression
rngcifuestrc.r  |-  R  =  (RngCat `  U )
rngcifuestrc.e  |-  E  =  (ExtStrCat `  U )
rngcifuestrc.b  |-  B  =  ( Base `  R
)
rngcifuestrc.u  |-  ( ph  ->  U  e.  V )
rngcifuestrc.f  |-  ( ph  ->  F  =  (  _I  |`  B ) )
rngcifuestrc.g  |-  ( ph  ->  G  =  ( x  e.  B ,  y  e.  B  |->  (  _I  |`  ( x RngHomo  y ) ) ) )
Assertion
Ref Expression
rngcifuestrc  |-  ( ph  ->  F ( R  Func  E ) G )
Distinct variable groups:    x, R, y    x, U, y    ph, x, y
Allowed substitution hints:    B( x, y)    E( x, y)    F( x, y)    G( x, y)    V( x, y)

Proof of Theorem rngcifuestrc
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  (ExtStrCat `  U
)  =  (ExtStrCat `  U
)
2 rngcifuestrc.u . . . . 5  |-  ( ph  ->  U  e.  V )
3 rngcifuestrc.r . . . . . . 7  |-  R  =  (RngCat `  U )
4 rngcifuestrc.b . . . . . . 7  |-  B  =  ( Base `  R
)
53, 4, 2rngcbas 41965 . . . . . 6  |-  ( ph  ->  B  =  ( U  i^i Rng ) )
6 incom 3805 . . . . . 6  |-  ( U  i^i Rng )  =  (Rng 
i^i  U )
75, 6syl6eq 2672 . . . . 5  |-  ( ph  ->  B  =  (Rng  i^i  U ) )
8 eqid 2622 . . . . . 6  |-  ( Hom  `  R )  =  ( Hom  `  R )
93, 4, 2, 8rngchomfval 41966 . . . . 5  |-  ( ph  ->  ( Hom  `  R
)  =  ( RngHomo  |`  ( B  X.  B ) ) )
101, 2, 7, 9rnghmsubcsetc 41977 . . . 4  |-  ( ph  ->  ( Hom  `  R
)  e.  (Subcat `  (ExtStrCat `  U ) ) )
1110idi 2 . . 3  |-  ( ph  ->  ( Hom  `  R
)  e.  (Subcat `  (ExtStrCat `  U ) ) )
12 eqid 2622 . . 3  |-  ( (ExtStrCat `  U )  |`cat  ( Hom  `  R ) )  =  ( (ExtStrCat `  U
)  |`cat  ( Hom  `  R
) )
13 eqid 2622 . . 3  |-  ( Base `  ( (ExtStrCat `  U
)  |`cat  ( Hom  `  R
) ) )  =  ( Base `  (
(ExtStrCat `  U )  |`cat  ( Hom  `  R )
) )
14 rngcifuestrc.f . . . 4  |-  ( ph  ->  F  =  (  _I  |`  B ) )
153, 2, 5, 9rngcval 41962 . . . . . . 7  |-  ( ph  ->  R  =  ( (ExtStrCat `  U )  |`cat  ( Hom  `  R ) ) )
1615fveq2d 6195 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  ( (ExtStrCat `  U
)  |`cat  ( Hom  `  R
) ) ) )
174, 16syl5eq 2668 . . . . 5  |-  ( ph  ->  B  =  ( Base `  ( (ExtStrCat `  U
)  |`cat  ( Hom  `  R
) ) ) )
1817reseq2d 5396 . . . 4  |-  ( ph  ->  (  _I  |`  B )  =  (  _I  |`  ( Base `  ( (ExtStrCat `  U
)  |`cat  ( Hom  `  R
) ) ) ) )
1914, 18eqtrd 2656 . . 3  |-  ( ph  ->  F  =  (  _I  |`  ( Base `  (
(ExtStrCat `  U )  |`cat  ( Hom  `  R )
) ) ) )
20 rngcifuestrc.g . . . 4  |-  ( ph  ->  G  =  ( x  e.  B ,  y  e.  B  |->  (  _I  |`  ( x RngHomo  y ) ) ) )
2117adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  B  =  ( Base `  (
(ExtStrCat `  U )  |`cat  ( Hom  `  R )
) ) )
229oveqdr 6674 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( Hom  `  R ) y )  =  ( x ( RngHomo  |`  ( B  X.  B
) ) y ) )
23 ovres 6800 . . . . . . . 8  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x ( RngHomo  |`  ( B  X.  B ) ) y )  =  ( x RngHomo  y ) )
2423adantl 482 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( RngHomo  |`  ( B  X.  B ) ) y )  =  ( x RngHomo  y ) )
2522, 24eqtr2d 2657 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x RngHomo  y )  =  ( x ( Hom  `  R )
y ) )
2625reseq2d 5396 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
(  _I  |`  (
x RngHomo  y ) )  =  (  _I  |`  (
x ( Hom  `  R
) y ) ) )
2717, 21, 26mpt2eq123dva 6716 . . . 4  |-  ( ph  ->  ( x  e.  B ,  y  e.  B  |->  (  _I  |`  (
x RngHomo  y ) ) )  =  ( x  e.  ( Base `  (
(ExtStrCat `  U )  |`cat  ( Hom  `  R )
) ) ,  y  e.  ( Base `  (
(ExtStrCat `  U )  |`cat  ( Hom  `  R )
) )  |->  (  _I  |`  ( x ( Hom  `  R ) y ) ) ) )
2820, 27eqtrd 2656 . . 3  |-  ( ph  ->  G  =  ( x  e.  ( Base `  (
(ExtStrCat `  U )  |`cat  ( Hom  `  R )
) ) ,  y  e.  ( Base `  (
(ExtStrCat `  U )  |`cat  ( Hom  `  R )
) )  |->  (  _I  |`  ( x ( Hom  `  R ) y ) ) ) )
2911, 12, 13, 19, 28inclfusubc 41867 . 2  |-  ( ph  ->  F ( ( (ExtStrCat `  U )  |`cat  ( Hom  `  R ) )  Func  (ExtStrCat `  U ) ) G )
30 rngcifuestrc.e . . . . 5  |-  E  =  (ExtStrCat `  U )
3130a1i 11 . . . 4  |-  ( ph  ->  E  =  (ExtStrCat `  U
) )
3215, 31oveq12d 6668 . . 3  |-  ( ph  ->  ( R  Func  E
)  =  ( ( (ExtStrCat `  U )  |`cat  ( Hom  `  R )
)  Func  (ExtStrCat `  U
) ) )
3332breqd 4664 . 2  |-  ( ph  ->  ( F ( R 
Func  E ) G  <->  F (
( (ExtStrCat `  U )  |`cat  ( Hom  `  R )
)  Func  (ExtStrCat `  U
) ) G ) )
3429, 33mpbird 247 1  |-  ( ph  ->  F ( R  Func  E ) G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573   class class class wbr 4653    _I cid 5023    X. cxp 5112    |` cres 5116   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   Hom chom 15952    |`cat cresc 16468  Subcatcsubc 16469    Func cfunc 16514  ExtStrCatcestrc 16762  Rngcrng 41874   RngHomo crngh 41885  RngCatcrngc 41957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-hom 15966  df-cco 15967  df-0g 16102  df-cat 16329  df-cid 16330  df-homf 16331  df-ssc 16470  df-resc 16471  df-subc 16472  df-func 16518  df-idfu 16519  df-full 16564  df-fth 16565  df-estrc 16763  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-ghm 17658  df-abl 18196  df-mgp 18490  df-mgmhm 41779  df-rng0 41875  df-rnghomo 41887  df-rngc 41959
This theorem is referenced by:  funcrngcsetcALT  41999
  Copyright terms: Public domain W3C validator