MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3sndisj Structured version   Visualization version   Unicode version

Theorem s3sndisj 13706
Description: The singletons consisting of length 3 strings which have distinct third symbols are disjunct. (Contributed by AV, 17-May-2021.)
Assertion
Ref Expression
s3sndisj  |-  ( ( A  e.  X  /\  B  e.  Y )  -> Disj  c  e.  Z  { <" A B c "> } )
Distinct variable groups:    A, c    B, c    X, c    Y, c    Z, c

Proof of Theorem s3sndisj
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 orc 400 . . . . 5  |-  ( c  =  d  ->  (
c  =  d  \/  ( { <" A B c "> }  i^i  { <" A B d "> } )  =  (/) ) )
21a1d 25 . . . 4  |-  ( c  =  d  ->  (
( ( A  e.  X  /\  B  e.  Y )  /\  (
c  e.  Z  /\  d  e.  Z )
)  ->  ( c  =  d  \/  ( { <" A B c "> }  i^i  {
<" A B d "> } )  =  (/) ) ) )
3 s3cli 13626 . . . . . . . . . . . 12  |-  <" A B c ">  e. Word  _V
4 elex 3212 . . . . . . . . . . . . . . 15  |-  ( A  e.  X  ->  A  e.  _V )
5 elex 3212 . . . . . . . . . . . . . . 15  |-  ( B  e.  Y  ->  B  e.  _V )
64, 5anim12i 590 . . . . . . . . . . . . . 14  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( A  e.  _V  /\  B  e.  _V )
)
7 elex 3212 . . . . . . . . . . . . . . 15  |-  ( d  e.  Z  ->  d  e.  _V )
87adantl 482 . . . . . . . . . . . . . 14  |-  ( ( c  e.  Z  /\  d  e.  Z )  ->  d  e.  _V )
96, 8anim12i 590 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  ( c  e.  Z  /\  d  e.  Z ) )  -> 
( ( A  e. 
_V  /\  B  e.  _V )  /\  d  e.  _V ) )
10 df-3an 1039 . . . . . . . . . . . . 13  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  d  e.  _V )  <->  ( ( A  e.  _V  /\  B  e.  _V )  /\  d  e.  _V ) )
119, 10sylibr 224 . . . . . . . . . . . 12  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  ( c  e.  Z  /\  d  e.  Z ) )  -> 
( A  e.  _V  /\  B  e.  _V  /\  d  e.  _V )
)
12 eqwrds3 13704 . . . . . . . . . . . 12  |-  ( (
<" A B c ">  e. Word  _V  /\  ( A  e.  _V  /\  B  e.  _V  /\  d  e.  _V )
)  ->  ( <" A B c ">  =  <" A B d ">  <->  (
( # `  <" A B c "> )  =  3  /\  ( ( <" A B c "> `  0 )  =  A  /\  ( <" A B c "> `  1 )  =  B  /\  ( <" A B c "> `  2 )  =  d ) ) ) )
133, 11, 12sylancr 695 . . . . . . . . . . 11  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  ( c  e.  Z  /\  d  e.  Z ) )  -> 
( <" A B c ">  =  <" A B d ">  <->  ( ( # `
 <" A B c "> )  =  3  /\  (
( <" A B c "> `  0
)  =  A  /\  ( <" A B c "> `  1
)  =  B  /\  ( <" A B c "> `  2
)  =  d ) ) ) )
14 vex 3203 . . . . . . . . . . . . . 14  |-  c  e. 
_V
15 s3fv2 13638 . . . . . . . . . . . . . 14  |-  ( c  e.  _V  ->  ( <" A B c "> `  2
)  =  c )
1614, 15ax-mp 5 . . . . . . . . . . . . 13  |-  ( <" A B c "> `  2
)  =  c
17 simp3 1063 . . . . . . . . . . . . 13  |-  ( ( ( <" A B c "> `  0 )  =  A  /\  ( <" A B c "> `  1 )  =  B  /\  ( <" A B c "> `  2 )  =  d )  ->  ( <" A B c "> `  2 )  =  d )
1816, 17syl5eqr 2670 . . . . . . . . . . . 12  |-  ( ( ( <" A B c "> `  0 )  =  A  /\  ( <" A B c "> `  1 )  =  B  /\  ( <" A B c "> `  2 )  =  d )  ->  c  =  d )
1918adantl 482 . . . . . . . . . . 11  |-  ( ( ( # `  <" A B c "> )  =  3  /\  ( ( <" A B c "> `  0
)  =  A  /\  ( <" A B c "> `  1
)  =  B  /\  ( <" A B c "> `  2
)  =  d ) )  ->  c  =  d )
2013, 19syl6bi 243 . . . . . . . . . 10  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  ( c  e.  Z  /\  d  e.  Z ) )  -> 
( <" A B c ">  =  <" A B d ">  ->  c  =  d ) )
2120con3rr3 151 . . . . . . . . 9  |-  ( -.  c  =  d  -> 
( ( ( A  e.  X  /\  B  e.  Y )  /\  (
c  e.  Z  /\  d  e.  Z )
)  ->  -.  <" A B c ">  =  <" A B d "> )
)
2221imp 445 . . . . . . . 8  |-  ( ( -.  c  =  d  /\  ( ( A  e.  X  /\  B  e.  Y )  /\  (
c  e.  Z  /\  d  e.  Z )
) )  ->  -.  <" A B c ">  =  <" A B d "> )
2322neqned 2801 . . . . . . 7  |-  ( ( -.  c  =  d  /\  ( ( A  e.  X  /\  B  e.  Y )  /\  (
c  e.  Z  /\  d  e.  Z )
) )  ->  <" A B c ">  =/=  <" A B d "> )
24 disjsn2 4247 . . . . . . 7  |-  ( <" A B c ">  =/=  <" A B d ">  ->  ( { <" A B c "> }  i^i  {
<" A B d "> } )  =  (/) )
2523, 24syl 17 . . . . . 6  |-  ( ( -.  c  =  d  /\  ( ( A  e.  X  /\  B  e.  Y )  /\  (
c  e.  Z  /\  d  e.  Z )
) )  ->  ( { <" A B c "> }  i^i  {
<" A B d "> } )  =  (/) )
2625olcd 408 . . . . 5  |-  ( ( -.  c  =  d  /\  ( ( A  e.  X  /\  B  e.  Y )  /\  (
c  e.  Z  /\  d  e.  Z )
) )  ->  (
c  =  d  \/  ( { <" A B c "> }  i^i  { <" A B d "> } )  =  (/) ) )
2726ex 450 . . . 4  |-  ( -.  c  =  d  -> 
( ( ( A  e.  X  /\  B  e.  Y )  /\  (
c  e.  Z  /\  d  e.  Z )
)  ->  ( c  =  d  \/  ( { <" A B c "> }  i^i  {
<" A B d "> } )  =  (/) ) ) )
282, 27pm2.61i 176 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  Y
)  /\  ( c  e.  Z  /\  d  e.  Z ) )  -> 
( c  =  d  \/  ( { <" A B c "> }  i^i  { <" A B d "> } )  =  (/) ) )
2928ralrimivva 2971 . 2  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  A. c  e.  Z  A. d  e.  Z  ( c  =  d  \/  ( { <" A B c "> }  i^i  { <" A B d "> } )  =  (/) ) )
30 eqidd 2623 . . . . 5  |-  ( c  =  d  ->  A  =  A )
31 eqidd 2623 . . . . 5  |-  ( c  =  d  ->  B  =  B )
32 id 22 . . . . 5  |-  ( c  =  d  ->  c  =  d )
3330, 31, 32s3eqd 13609 . . . 4  |-  ( c  =  d  ->  <" A B c ">  =  <" A B d "> )
3433sneqd 4189 . . 3  |-  ( c  =  d  ->  { <" A B c "> }  =  { <" A B d "> } )
3534disjor 4634 . 2  |-  (Disj  c  e.  Z  { <" A B c "> }  <->  A. c  e.  Z  A. d  e.  Z  ( c  =  d  \/  ( { <" A B c "> }  i^i  { <" A B d "> } )  =  (/) ) )
3629, 35sylibr 224 1  |-  ( ( A  e.  X  /\  B  e.  Y )  -> Disj  c  e.  Z  { <" A B c "> } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    i^i cin 3573   (/)c0 3915   {csn 4177  Disj wdisj 4620   ` cfv 5888   0cc0 9936   1c1 9937   2c2 11070   3c3 11071   #chash 13117  Word cword 13291   <"cs3 13587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594
This theorem is referenced by:  fusgreghash2wspv  27199
  Copyright terms: Public domain W3C validator