MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdl3s3 Structured version   Visualization version   Unicode version

Theorem wrdl3s3 13705
Description: A word of length 3 is a length 3 string. (Contributed by AV, 18-May-2021.)
Assertion
Ref Expression
wrdl3s3  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  3 )  <->  E. a  e.  V  E. b  e.  V  E. c  e.  V  W  =  <" a b c "> )
Distinct variable groups:    V, a,
b, c    W, a,
b, c

Proof of Theorem wrdl3s3
StepHypRef Expression
1 c0ex 10034 . . . . . . . 8  |-  0  e.  _V
21tpid1 4303 . . . . . . 7  |-  0  e.  { 0 ,  1 ,  2 }
3 fzo0to3tp 12554 . . . . . . 7  |-  ( 0..^ 3 )  =  {
0 ,  1 ,  2 }
42, 3eleqtrri 2700 . . . . . 6  |-  0  e.  ( 0..^ 3 )
5 oveq2 6658 . . . . . 6  |-  ( (
# `  W )  =  3  ->  (
0..^ ( # `  W
) )  =  ( 0..^ 3 ) )
64, 5syl5eleqr 2708 . . . . 5  |-  ( (
# `  W )  =  3  ->  0  e.  ( 0..^ ( # `  W ) ) )
7 wrdsymbcl 13318 . . . . 5  |-  ( ( W  e. Word  V  /\  0  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  0
)  e.  V )
86, 7sylan2 491 . . . 4  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  3 )  -> 
( W `  0
)  e.  V )
9 1ex 10035 . . . . . . . 8  |-  1  e.  _V
109tpid2 4304 . . . . . . 7  |-  1  e.  { 0 ,  1 ,  2 }
1110, 3eleqtrri 2700 . . . . . 6  |-  1  e.  ( 0..^ 3 )
1211, 5syl5eleqr 2708 . . . . 5  |-  ( (
# `  W )  =  3  ->  1  e.  ( 0..^ ( # `  W ) ) )
13 wrdsymbcl 13318 . . . . 5  |-  ( ( W  e. Word  V  /\  1  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  1
)  e.  V )
1412, 13sylan2 491 . . . 4  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  3 )  -> 
( W `  1
)  e.  V )
15 2ex 11092 . . . . . . . 8  |-  2  e.  _V
1615tpid3 4307 . . . . . . 7  |-  2  e.  { 0 ,  1 ,  2 }
1716, 3eleqtrri 2700 . . . . . 6  |-  2  e.  ( 0..^ 3 )
1817, 5syl5eleqr 2708 . . . . 5  |-  ( (
# `  W )  =  3  ->  2  e.  ( 0..^ ( # `  W ) ) )
19 wrdsymbcl 13318 . . . . 5  |-  ( ( W  e. Word  V  /\  2  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  2
)  e.  V )
2018, 19sylan2 491 . . . 4  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  3 )  -> 
( W `  2
)  e.  V )
21 simpr 477 . . . . 5  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  3 )  -> 
( # `  W )  =  3 )
22 eqid 2622 . . . . . 6  |-  ( W `
 0 )  =  ( W `  0
)
23 eqid 2622 . . . . . 6  |-  ( W `
 1 )  =  ( W `  1
)
24 eqid 2622 . . . . . 6  |-  ( W `
 2 )  =  ( W `  2
)
2522, 23, 243pm3.2i 1239 . . . . 5  |-  ( ( W `  0 )  =  ( W ` 
0 )  /\  ( W `  1 )  =  ( W ` 
1 )  /\  ( W `  2 )  =  ( W ` 
2 ) )
2621, 25jctir 561 . . . 4  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  3 )  -> 
( ( # `  W
)  =  3  /\  ( ( W ` 
0 )  =  ( W `  0 )  /\  ( W ` 
1 )  =  ( W `  1 )  /\  ( W ` 
2 )  =  ( W `  2 ) ) ) )
27 eqeq2 2633 . . . . . . 7  |-  ( a  =  ( W ` 
0 )  ->  (
( W `  0
)  =  a  <->  ( W `  0 )  =  ( W `  0
) ) )
28273anbi1d 1403 . . . . . 6  |-  ( a  =  ( W ` 
0 )  ->  (
( ( W ` 
0 )  =  a  /\  ( W ` 
1 )  =  b  /\  ( W ` 
2 )  =  c )  <->  ( ( W `
 0 )  =  ( W `  0
)  /\  ( W `  1 )  =  b  /\  ( W `
 2 )  =  c ) ) )
2928anbi2d 740 . . . . 5  |-  ( a  =  ( W ` 
0 )  ->  (
( ( # `  W
)  =  3  /\  ( ( W ` 
0 )  =  a  /\  ( W ` 
1 )  =  b  /\  ( W ` 
2 )  =  c ) )  <->  ( ( # `
 W )  =  3  /\  ( ( W `  0 )  =  ( W ` 
0 )  /\  ( W `  1 )  =  b  /\  ( W `  2 )  =  c ) ) ) )
30 eqeq2 2633 . . . . . . 7  |-  ( b  =  ( W ` 
1 )  ->  (
( W `  1
)  =  b  <->  ( W `  1 )  =  ( W `  1
) ) )
31303anbi2d 1404 . . . . . 6  |-  ( b  =  ( W ` 
1 )  ->  (
( ( W ` 
0 )  =  ( W `  0 )  /\  ( W ` 
1 )  =  b  /\  ( W ` 
2 )  =  c )  <->  ( ( W `
 0 )  =  ( W `  0
)  /\  ( W `  1 )  =  ( W `  1
)  /\  ( W `  2 )  =  c ) ) )
3231anbi2d 740 . . . . 5  |-  ( b  =  ( W ` 
1 )  ->  (
( ( # `  W
)  =  3  /\  ( ( W ` 
0 )  =  ( W `  0 )  /\  ( W ` 
1 )  =  b  /\  ( W ` 
2 )  =  c ) )  <->  ( ( # `
 W )  =  3  /\  ( ( W `  0 )  =  ( W ` 
0 )  /\  ( W `  1 )  =  ( W ` 
1 )  /\  ( W `  2 )  =  c ) ) ) )
33 eqeq2 2633 . . . . . . 7  |-  ( c  =  ( W ` 
2 )  ->  (
( W `  2
)  =  c  <->  ( W `  2 )  =  ( W `  2
) ) )
34333anbi3d 1405 . . . . . 6  |-  ( c  =  ( W ` 
2 )  ->  (
( ( W ` 
0 )  =  ( W `  0 )  /\  ( W ` 
1 )  =  ( W `  1 )  /\  ( W ` 
2 )  =  c )  <->  ( ( W `
 0 )  =  ( W `  0
)  /\  ( W `  1 )  =  ( W `  1
)  /\  ( W `  2 )  =  ( W `  2
) ) ) )
3534anbi2d 740 . . . . 5  |-  ( c  =  ( W ` 
2 )  ->  (
( ( # `  W
)  =  3  /\  ( ( W ` 
0 )  =  ( W `  0 )  /\  ( W ` 
1 )  =  ( W `  1 )  /\  ( W ` 
2 )  =  c ) )  <->  ( ( # `
 W )  =  3  /\  ( ( W `  0 )  =  ( W ` 
0 )  /\  ( W `  1 )  =  ( W ` 
1 )  /\  ( W `  2 )  =  ( W ` 
2 ) ) ) ) )
3629, 32, 35rspc3ev 3326 . . . 4  |-  ( ( ( ( W ` 
0 )  e.  V  /\  ( W `  1
)  e.  V  /\  ( W `  2 )  e.  V )  /\  ( ( # `  W
)  =  3  /\  ( ( W ` 
0 )  =  ( W `  0 )  /\  ( W ` 
1 )  =  ( W `  1 )  /\  ( W ` 
2 )  =  ( W `  2 ) ) ) )  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( # `  W
)  =  3  /\  ( ( W ` 
0 )  =  a  /\  ( W ` 
1 )  =  b  /\  ( W ` 
2 )  =  c ) ) )
378, 14, 20, 26, 36syl31anc 1329 . . 3  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  3 )  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( # `  W
)  =  3  /\  ( ( W ` 
0 )  =  a  /\  ( W ` 
1 )  =  b  /\  ( W ` 
2 )  =  c ) ) )
38 df-3an 1039 . . . . . . . . 9  |-  ( ( a  e.  V  /\  b  e.  V  /\  c  e.  V )  <->  ( ( a  e.  V  /\  b  e.  V
)  /\  c  e.  V ) )
39 eqwrds3 13704 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  ( a  e.  V  /\  b  e.  V  /\  c  e.  V
) )  ->  ( W  =  <" a
b c ">  <->  (
( # `  W )  =  3  /\  (
( W `  0
)  =  a  /\  ( W `  1 )  =  b  /\  ( W `  2 )  =  c ) ) ) )
4039ex 450 . . . . . . . . 9  |-  ( W  e. Word  V  ->  (
( a  e.  V  /\  b  e.  V  /\  c  e.  V
)  ->  ( W  =  <" a b c ">  <->  ( ( # `
 W )  =  3  /\  ( ( W `  0 )  =  a  /\  ( W `  1 )  =  b  /\  ( W `  2 )  =  c ) ) ) ) )
4138, 40syl5bir 233 . . . . . . . 8  |-  ( W  e. Word  V  ->  (
( ( a  e.  V  /\  b  e.  V )  /\  c  e.  V )  ->  ( W  =  <" a
b c ">  <->  (
( # `  W )  =  3  /\  (
( W `  0
)  =  a  /\  ( W `  1 )  =  b  /\  ( W `  2 )  =  c ) ) ) ) )
4241expd 452 . . . . . . 7  |-  ( W  e. Word  V  ->  (
( a  e.  V  /\  b  e.  V
)  ->  ( c  e.  V  ->  ( W  =  <" a b c ">  <->  ( ( # `
 W )  =  3  /\  ( ( W `  0 )  =  a  /\  ( W `  1 )  =  b  /\  ( W `  2 )  =  c ) ) ) ) ) )
4342adantr 481 . . . . . 6  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  3 )  -> 
( ( a  e.  V  /\  b  e.  V )  ->  (
c  e.  V  -> 
( W  =  <" a b c ">  <->  ( ( # `  W )  =  3  /\  ( ( W `
 0 )  =  a  /\  ( W `
 1 )  =  b  /\  ( W `
 2 )  =  c ) ) ) ) ) )
4443imp31 448 . . . . 5  |-  ( ( ( ( W  e. Word  V  /\  ( # `  W
)  =  3 )  /\  ( a  e.  V  /\  b  e.  V ) )  /\  c  e.  V )  ->  ( W  =  <" a b c ">  <->  ( ( # `  W )  =  3  /\  ( ( W `
 0 )  =  a  /\  ( W `
 1 )  =  b  /\  ( W `
 2 )  =  c ) ) ) )
4544rexbidva 3049 . . . 4  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  =  3 )  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( E. c  e.  V  W  =  <" a b c ">  <->  E. c  e.  V  ( ( # `  W
)  =  3  /\  ( ( W ` 
0 )  =  a  /\  ( W ` 
1 )  =  b  /\  ( W ` 
2 )  =  c ) ) ) )
46452rexbidva 3056 . . 3  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  3 )  -> 
( E. a  e.  V  E. b  e.  V  E. c  e.  V  W  =  <" a b c ">  <->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( ( # `  W
)  =  3  /\  ( ( W ` 
0 )  =  a  /\  ( W ` 
1 )  =  b  /\  ( W ` 
2 )  =  c ) ) ) )
4737, 46mpbird 247 . 2  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  3 )  ->  E. a  e.  V  E. b  e.  V  E. c  e.  V  W  =  <" a
b c "> )
48 s3cl 13624 . . . . . . . 8  |-  ( ( a  e.  V  /\  b  e.  V  /\  c  e.  V )  ->  <" a b c ">  e. Word  V )
4948ad4ant123 1294 . . . . . . 7  |-  ( ( ( ( a  e.  V  /\  b  e.  V )  /\  c  e.  V )  /\  W  =  <" a b c "> )  ->  <" a b c ">  e. Word  V )
50 s3len 13639 . . . . . . 7  |-  ( # `  <" a b c "> )  =  3
5149, 50jctir 561 . . . . . 6  |-  ( ( ( ( a  e.  V  /\  b  e.  V )  /\  c  e.  V )  /\  W  =  <" a b c "> )  ->  ( <" a
b c ">  e. Word  V  /\  ( # `  <" a b c "> )  =  3 ) )
52 eleq1 2689 . . . . . . . 8  |-  ( W  =  <" a b c ">  ->  ( W  e. Word  V  <->  <" a
b c ">  e. Word  V ) )
53 fveq2 6191 . . . . . . . . 9  |-  ( W  =  <" a b c ">  ->  (
# `  W )  =  ( # `  <" a b c "> ) )
5453eqeq1d 2624 . . . . . . . 8  |-  ( W  =  <" a b c ">  ->  ( ( # `  W
)  =  3  <->  ( # `
 <" a b c "> )  =  3 ) )
5552, 54anbi12d 747 . . . . . . 7  |-  ( W  =  <" a b c ">  ->  ( ( W  e. Word  V  /\  ( # `  W
)  =  3 )  <-> 
( <" a b c ">  e. Word  V  /\  ( # `  <" a b c "> )  =  3 ) ) )
5655adantl 482 . . . . . 6  |-  ( ( ( ( a  e.  V  /\  b  e.  V )  /\  c  e.  V )  /\  W  =  <" a b c "> )  ->  ( ( W  e. Word  V  /\  ( # `  W
)  =  3 )  <-> 
( <" a b c ">  e. Word  V  /\  ( # `  <" a b c "> )  =  3 ) ) )
5751, 56mpbird 247 . . . . 5  |-  ( ( ( ( a  e.  V  /\  b  e.  V )  /\  c  e.  V )  /\  W  =  <" a b c "> )  ->  ( W  e. Word  V  /\  ( # `  W
)  =  3 ) )
5857ex 450 . . . 4  |-  ( ( ( a  e.  V  /\  b  e.  V
)  /\  c  e.  V )  ->  ( W  =  <" a
b c ">  ->  ( W  e. Word  V  /\  ( # `  W
)  =  3 ) ) )
5958rexlimdva 3031 . . 3  |-  ( ( a  e.  V  /\  b  e.  V )  ->  ( E. c  e.  V  W  =  <" a b c ">  ->  ( W  e. Word  V  /\  ( # `  W )  =  3 ) ) )
6059rexlimivv 3036 . 2  |-  ( E. a  e.  V  E. b  e.  V  E. c  e.  V  W  =  <" a b c ">  ->  ( W  e. Word  V  /\  ( # `  W )  =  3 ) )
6147, 60impbii 199 1  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  3 )  <->  E. a  e.  V  E. b  e.  V  E. c  e.  V  W  =  <" a b c "> )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {ctp 4181   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937   2c2 11070   3c3 11071  ..^cfzo 12465   #chash 13117  Word cword 13291   <"cs3 13587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594
This theorem is referenced by:  elwwlks2s3  26859
  Copyright terms: Public domain W3C validator