MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seq1st Structured version   Visualization version   Unicode version

Theorem seq1st 15284
Description: A sequence whose iteration function ignores the second argument is only affected by the first point of the initial value function. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
algrf.1  |-  Z  =  ( ZZ>= `  M )
algrf.2  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
Assertion
Ref Expression
seq1st  |-  ( ( M  e.  ZZ  /\  A  e.  V )  ->  R  =  seq M
( ( F  o.  1st ) ,  { <. M ,  A >. } ) )

Proof of Theorem seq1st
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . 2  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
2 seqfn 12813 . . . 4  |-  ( M  e.  ZZ  ->  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )  Fn  ( ZZ>= `  M )
)
32adantr 481 . . 3  |-  ( ( M  e.  ZZ  /\  A  e.  V )  ->  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )  Fn  ( ZZ>= `  M
) )
4 seqfn 12813 . . . 4  |-  ( M  e.  ZZ  ->  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } )  Fn  ( ZZ>=
`  M ) )
54adantr 481 . . 3  |-  ( ( M  e.  ZZ  /\  A  e.  V )  ->  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } )  Fn  ( ZZ>=
`  M ) )
6 fveq2 6191 . . . . . . . 8  |-  ( y  =  M  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  y )  =  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 M ) )
7 fveq2 6191 . . . . . . . 8  |-  ( y  =  M  ->  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  y
)  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  M
) )
86, 7eqeq12d 2637 . . . . . . 7  |-  ( y  =  M  ->  (
(  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 y )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  y )  <->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  M )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  M
) ) )
98imbi2d 330 . . . . . 6  |-  ( y  =  M  ->  (
( A  e.  V  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  y )  =  (  seq M
( ( F  o.  1st ) ,  { <. M ,  A >. } ) `
 y ) )  <-> 
( A  e.  V  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  M )  =  (  seq M
( ( F  o.  1st ) ,  { <. M ,  A >. } ) `
 M ) ) ) )
10 fveq2 6191 . . . . . . . 8  |-  ( y  =  x  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  y )  =  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 x ) )
11 fveq2 6191 . . . . . . . 8  |-  ( y  =  x  ->  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  y
)  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x
) )
1210, 11eqeq12d 2637 . . . . . . 7  |-  ( y  =  x  ->  (
(  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 y )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  y )  <->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  x )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x
) ) )
1312imbi2d 330 . . . . . 6  |-  ( y  =  x  ->  (
( A  e.  V  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  y )  =  (  seq M
( ( F  o.  1st ) ,  { <. M ,  A >. } ) `
 y ) )  <-> 
( A  e.  V  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  x )  =  (  seq M
( ( F  o.  1st ) ,  { <. M ,  A >. } ) `
 x ) ) ) )
14 fveq2 6191 . . . . . . . 8  |-  ( y  =  ( x  + 
1 )  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  y )  =  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 ( x  + 
1 ) ) )
15 fveq2 6191 . . . . . . . 8  |-  ( y  =  ( x  + 
1 )  ->  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  y
)  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  (
x  +  1 ) ) )
1614, 15eqeq12d 2637 . . . . . . 7  |-  ( y  =  ( x  + 
1 )  ->  (
(  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 y )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  y )  <->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  ( x  +  1
) )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  (
x  +  1 ) ) ) )
1716imbi2d 330 . . . . . 6  |-  ( y  =  ( x  + 
1 )  ->  (
( A  e.  V  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  y )  =  (  seq M
( ( F  o.  1st ) ,  { <. M ,  A >. } ) `
 y ) )  <-> 
( A  e.  V  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  ( x  +  1 ) )  =  (  seq M
( ( F  o.  1st ) ,  { <. M ,  A >. } ) `
 ( x  + 
1 ) ) ) ) )
18 seq1 12814 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  M )  =  ( ( Z  X.  { A } ) `  M
) )
1918adantr 481 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  A  e.  V )  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  M )  =  ( ( Z  X.  { A }
) `  M )
)
20 seq1 12814 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  M
)  =  ( {
<. M ,  A >. } `
 M ) )
2120adantr 481 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  A  e.  V )  ->  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  M )  =  ( { <. M ,  A >. } `  M ) )
22 id 22 . . . . . . . . . . 11  |-  ( A  e.  V  ->  A  e.  V )
23 uzid 11702 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
24 algrf.1 . . . . . . . . . . . 12  |-  Z  =  ( ZZ>= `  M )
2523, 24syl6eleqr 2712 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  Z )
26 fvconst2g 6467 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  M  e.  Z )  ->  ( ( Z  X.  { A } ) `  M )  =  A )
2722, 25, 26syl2anr 495 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  A  e.  V )  ->  ( ( Z  X.  { A } ) `  M )  =  A )
28 fvsng 6447 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  A  e.  V )  ->  ( { <. M ,  A >. } `  M
)  =  A )
2927, 28eqtr4d 2659 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  A  e.  V )  ->  ( ( Z  X.  { A } ) `  M )  =  ( { <. M ,  A >. } `  M ) )
3021, 29eqtr4d 2659 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  A  e.  V )  ->  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  M )  =  ( ( Z  X.  { A } ) `  M
) )
3119, 30eqtr4d 2659 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  A  e.  V )  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  M )  =  (  seq M
( ( F  o.  1st ) ,  { <. M ,  A >. } ) `
 M ) )
3231ex 450 . . . . . 6  |-  ( M  e.  ZZ  ->  ( A  e.  V  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 M )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  M ) ) )
33 fveq2 6191 . . . . . . . . 9  |-  ( (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 x )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x )  ->  ( F `  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  x ) )  =  ( F `  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x
) ) )
34 seqp1 12816 . . . . . . . . . . . 12  |-  ( x  e.  ( ZZ>= `  M
)  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  ( x  +  1
) )  =  ( (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  x ) ( F  o.  1st ) ( ( Z  X.  { A }
) `  ( x  +  1 ) ) ) )
35 fvex 6201 . . . . . . . . . . . . 13  |-  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  x )  e.  _V
36 fvex 6201 . . . . . . . . . . . . 13  |-  ( ( Z  X.  { A } ) `  (
x  +  1 ) )  e.  _V
3735, 36algrflem 7286 . . . . . . . . . . . 12  |-  ( (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 x ) ( F  o.  1st )
( ( Z  X.  { A } ) `  ( x  +  1
) ) )  =  ( F `  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  x ) )
3834, 37syl6eq 2672 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  M
)  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  ( x  +  1
) )  =  ( F `  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  x ) ) )
39 seqp1 12816 . . . . . . . . . . . 12  |-  ( x  e.  ( ZZ>= `  M
)  ->  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  (
x  +  1 ) )  =  ( (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x
) ( F  o.  1st ) ( { <. M ,  A >. } `  ( x  +  1
) ) ) )
40 fvex 6201 . . . . . . . . . . . . 13  |-  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x
)  e.  _V
41 fvex 6201 . . . . . . . . . . . . 13  |-  ( {
<. M ,  A >. } `
 ( x  + 
1 ) )  e. 
_V
4240, 41algrflem 7286 . . . . . . . . . . . 12  |-  ( (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x
) ( F  o.  1st ) ( { <. M ,  A >. } `  ( x  +  1
) ) )  =  ( F `  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x
) )
4339, 42syl6eq 2672 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  M
)  ->  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  (
x  +  1 ) )  =  ( F `
 (  seq M
( ( F  o.  1st ) ,  { <. M ,  A >. } ) `
 x ) ) )
4438, 43eqeq12d 2637 . . . . . . . . . 10  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  ( x  +  1
) )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  (
x  +  1 ) )  <->  ( F `  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 x ) )  =  ( F `  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x
) ) ) )
4544adantl 482 . . . . . . . . 9  |-  ( ( A  e.  V  /\  x  e.  ( ZZ>= `  M ) )  -> 
( (  seq M
( ( F  o.  1st ) ,  ( Z  X.  { A }
) ) `  (
x  +  1 ) )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  (
x  +  1 ) )  <->  ( F `  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 x ) )  =  ( F `  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x
) ) ) )
4633, 45syl5ibr 236 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  e.  ( ZZ>= `  M ) )  -> 
( (  seq M
( ( F  o.  1st ) ,  ( Z  X.  { A }
) ) `  x
)  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x
)  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  ( x  +  1
) )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  (
x  +  1 ) ) ) )
4746expcom 451 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( A  e.  V  ->  ( (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 x )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x )  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  ( x  +  1
) )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  (
x  +  1 ) ) ) ) )
4847a2d 29 . . . . . 6  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( ( A  e.  V  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 x )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x ) )  -> 
( A  e.  V  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  ( x  +  1 ) )  =  (  seq M
( ( F  o.  1st ) ,  { <. M ,  A >. } ) `
 ( x  + 
1 ) ) ) ) )
499, 13, 17, 13, 32, 48uzind4 11746 . . . . 5  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( A  e.  V  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  x )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x
) ) )
5049impcom 446 . . . 4  |-  ( ( A  e.  V  /\  x  e.  ( ZZ>= `  M ) )  -> 
(  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 x )  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x ) )
5150adantll 750 . . 3  |-  ( ( ( M  e.  ZZ  /\  A  e.  V )  /\  x  e.  (
ZZ>= `  M ) )  ->  (  seq M
( ( F  o.  1st ) ,  ( Z  X.  { A }
) ) `  x
)  =  (  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) `  x
) )
523, 5, 51eqfnfvd 6314 . 2  |-  ( ( M  e.  ZZ  /\  A  e.  V )  ->  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )  =  seq M ( ( F  o.  1st ) ,  { <. M ,  A >. } ) )
531, 52syl5eq 2668 1  |-  ( ( M  e.  ZZ  /\  A  e.  V )  ->  R  =  seq M
( ( F  o.  1st ) ,  { <. M ,  A >. } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {csn 4177   <.cop 4183    X. cxp 5112    o. ccom 5118    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   1stc1st 7166   1c1 9937    + caddc 9939   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator