MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqfn Structured version   Visualization version   Unicode version

Theorem seqfn 12813
Description: The sequence builder function is a function. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
seqfn  |-  ( M  e.  ZZ  ->  seq M (  .+  ,  F )  Fn  ( ZZ>=
`  M ) )

Proof of Theorem seqfn
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqeq1 12804 . . 3  |-  ( M  =  if ( M  e.  ZZ ,  M ,  0 )  ->  seq M (  .+  ,  F )  =  seq if ( M  e.  ZZ ,  M ,  0 ) (  .+  ,  F
) )
2 fveq2 6191 . . 3  |-  ( M  =  if ( M  e.  ZZ ,  M ,  0 )  -> 
( ZZ>= `  M )  =  ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) ) )
31, 2fneq12d 5983 . 2  |-  ( M  =  if ( M  e.  ZZ ,  M ,  0 )  -> 
(  seq M (  .+  ,  F )  Fn  ( ZZ>=
`  M )  <->  seq if ( M  e.  ZZ ,  M ,  0 ) (  .+  ,  F
)  Fn  ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) ) ) )
4 0z 11388 . . . 4  |-  0  e.  ZZ
54elimel 4150 . . 3  |-  if ( M  e.  ZZ ,  M ,  0 )  e.  ZZ
6 eqid 2622 . . 3  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( M  e.  ZZ ,  M , 
0 ) )  |`  om )  =  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( M  e.  ZZ ,  M , 
0 ) )  |`  om )
7 fvex 6201 . . 3  |-  ( F `
 if ( M  e.  ZZ ,  M ,  0 ) )  e.  _V
8 eqid 2622 . . 3  |-  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e. 
_V ,  w  e. 
_V  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. if ( M  e.  ZZ ,  M ,  0 ) ,  ( F `  if ( M  e.  ZZ ,  M ,  0 ) ) >. )  |`  om )  =  ( rec (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. if ( M  e.  ZZ ,  M ,  0 ) ,  ( F `  if ( M  e.  ZZ ,  M ,  0 ) ) >. )  |`  om )
98seqval 12812 . . 3  |-  seq if ( M  e.  ZZ ,  M ,  0 ) (  .+  ,  F
)  =  ran  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e. 
_V ,  w  e. 
_V  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. if ( M  e.  ZZ ,  M ,  0 ) ,  ( F `  if ( M  e.  ZZ ,  M ,  0 ) ) >. )  |`  om )
105, 6, 7, 8, 9uzrdgfni 12757 . 2  |-  seq if ( M  e.  ZZ ,  M ,  0 ) (  .+  ,  F
)  Fn  ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) )
113, 10dedth 4139 1  |-  ( M  e.  ZZ  ->  seq M (  .+  ,  F )  Fn  ( ZZ>=
`  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086   <.cop 4183    |-> cmpt 4729    |` cres 5116    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   reccrdg 7505   0cc0 9936   1c1 9937    + caddc 9939   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802
This theorem is referenced by:  seqf2  12820  seqfeq2  12824  seqfeq  12826  seqfeq3  12851  ser0f  12854  facnn  13062  fac0  13063  seqshft  13825  prodf1f  14624  efcvgfsum  14816  seq1st  15284  prmrec  15626  gsumpropd2lem  17273  ovolunlem1  23265  ovoliunlem1  23270  volsup  23324  mtest  24158  mtestbdd  24159  pserulm  24176  pserdvlem2  24182  emcllem5  24726  lgamgulm2  24762  lgamcvglem  24766  gamcvg2lem  24785  esumfsup  30132  esumpcvgval  30140  esumcvg  30148  esumcvgsum  30150  esumsup  30151  sseqfv1  30451  sseqfn  30452  sseqfv2  30456  faclimlem1  31629  knoppcnlem8  32490  knoppcnlem11  32493  mblfinlem2  33447  ovoliunnfl  33451  voliunnfl  33453
  Copyright terms: Public domain W3C validator