Proof of Theorem seqz
| Step | Hyp | Ref
| Expression |
| 1 | | seqz.5 |
. . . 4
       |
| 2 | | elfzuz 12338 |
. . . 4
           |
| 3 | 1, 2 | syl 17 |
. . 3
       |
| 4 | | eluzelz 11697 |
. . . . . . . . 9
    
  |
| 5 | 3, 4 | syl 17 |
. . . . . . . 8
   |
| 6 | | seq1 12814 |
. . . . . . . 8
             |
| 7 | 5, 6 | syl 17 |
. . . . . . 7
             |
| 8 | | seqz.7 |
. . . . . . 7
       |
| 9 | 7, 8 | eqtrd 2656 |
. . . . . 6
         |
| 10 | | seqeq1 12804 |
. . . . . . . 8
         |
| 11 | 10 | fveq1d 6193 |
. . . . . . 7
               |
| 12 | 11 | eqeq1d 2624 |
. . . . . 6
       
         |
| 13 | 9, 12 | syl5ibcom 235 |
. . . . 5
   
       |
| 14 | | eluzel2 11692 |
. . . . . . . . 9
    
  |
| 15 | 3, 14 | syl 17 |
. . . . . . . 8
   |
| 16 | | seqm1 12818 |
. . . . . . . 8
 
   
               
         |
| 17 | 15, 16 | sylan 488 |
. . . . . . 7
 
      
            
         |
| 18 | 8 | adantr 481 |
. . . . . . . . 9
 
      
      |
| 19 | 18 | oveq2d 6666 |
. . . . . . . 8
 
      
      
             
     |
| 20 | | eluzp1m1 11711 |
. . . . . . . . . . 11
 
   
           |
| 21 | 15, 20 | sylan 488 |
. . . . . . . . . 10
 
      
        |
| 22 | | fzssp1 12384 |
. . . . . . . . . . . . . . 15
               |
| 23 | 5 | zcnd 11483 |
. . . . . . . . . . . . . . . . 17
   |
| 24 | | ax-1cn 9994 |
. . . . . . . . . . . . . . . . 17
 |
| 25 | | npcan 10290 |
. . . . . . . . . . . . . . . . 17
 
       |
| 26 | 23, 24, 25 | sylancl 694 |
. . . . . . . . . . . . . . . 16
       |
| 27 | 26 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
               |
| 28 | 22, 27 | syl5sseq 3653 |
. . . . . . . . . . . . . 14
    
 
      |
| 29 | | elfzuz3 12339 |
. . . . . . . . . . . . . . . 16
           |
| 30 | 1, 29 | syl 17 |
. . . . . . . . . . . . . . 15
       |
| 31 | | fzss2 12381 |
. . . . . . . . . . . . . . 15
    
          |
| 32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . 14
    
      |
| 33 | 28, 32 | sstrd 3613 |
. . . . . . . . . . . . 13
    
 
      |
| 34 | 33 | adantr 481 |
. . . . . . . . . . . 12
 
      
            |
| 35 | 34 | sselda 3603 |
. . . . . . . . . . 11
             
         |
| 36 | | seqhomo.2 |
. . . . . . . . . . . 12
 
    
      |
| 37 | 36 | adantlr 751 |
. . . . . . . . . . 11
                     |
| 38 | 35, 37 | syldan 487 |
. . . . . . . . . 10
             
         |
| 39 | | seqhomo.1 |
. . . . . . . . . . 11
 

      |
| 40 | 39 | adantlr 751 |
. . . . . . . . . 10
                 |
| 41 | 21, 38, 40 | seqcl 12821 |
. . . . . . . . 9
 
      
     
    |
| 42 | | seqz.4 |
. . . . . . . . . . 11
 
 
   |
| 43 | 42 | ralrimiva 2966 |
. . . . . . . . . 10
  
   |
| 44 | 43 | adantr 481 |
. . . . . . . . 9
 
      

    |
| 45 | | oveq1 6657 |
. . . . . . . . . . 11
  
                    |
| 46 | 45 | eqeq1d 2624 |
. . . . . . . . . 10
  
               
      |
| 47 | 46 | rspcv 3305 |
. . . . . . . . 9
      
            
      |
| 48 | 41, 44, 47 | sylc 65 |
. . . . . . . 8
 
      
      
     |
| 49 | 19, 48 | eqtrd 2656 |
. . . . . . 7
 
      
      
         |
| 50 | 17, 49 | eqtrd 2656 |
. . . . . 6
 
      
        |
| 51 | 50 | ex 450 |
. . . . 5
                 |
| 52 | | uzp1 11721 |
. . . . . 6
    

         |
| 53 | 3, 52 | syl 17 |
. . . . 5
           |
| 54 | 13, 51, 53 | mpjaod 396 |
. . . 4
         |
| 55 | 54, 8 | eqtr4d 2659 |
. . 3
             |
| 56 | | eqidd 2623 |
. . 3
 
                 |
| 57 | 3, 55, 30, 56 | seqfveq2 12823 |
. 2
               |
| 58 | | fvex 6201 |
. . . . . 6
     |
| 59 | 58 | elsn 4192 |
. . . . 5
             |
| 60 | 8, 59 | sylibr 224 |
. . . 4
         |
| 61 | | simprl 794 |
. . . . . . . 8
 
  
 
    |
| 62 | | velsn 4193 |
. . . . . . . 8
     |
| 63 | 61, 62 | sylib 208 |
. . . . . . 7
 
  
 
  |
| 64 | 63 | oveq1d 6665 |
. . . . . 6
 
  
 
      |
| 65 | | simprr 796 |
. . . . . . 7
 
  
 
  |
| 66 | | seqz.3 |
. . . . . . . . 9
 
     |
| 67 | 66 | ralrimiva 2966 |
. . . . . . . 8
  
   |
| 68 | 67 | adantr 481 |
. . . . . . 7
 
  
 

    |
| 69 | | oveq2 6658 |
. . . . . . . . 9
       |
| 70 | 69 | eqeq1d 2624 |
. . . . . . . 8
   
     |
| 71 | 70 | rspcv 3305 |
. . . . . . 7
  

      |
| 72 | 65, 68, 71 | sylc 65 |
. . . . . 6
 
  
 
    |
| 73 | 64, 72 | eqtrd 2656 |
. . . . 5
 
  
 
    |
| 74 | | ovex 6678 |
. . . . . 6
   |
| 75 | 74 | elsn 4192 |
. . . . 5
         |
| 76 | 73, 75 | sylibr 224 |
. . . 4
 
  
 
      |
| 77 | | peano2uz 11741 |
. . . . . . . 8
    
        |
| 78 | 3, 77 | syl 17 |
. . . . . . 7
         |
| 79 | | fzss1 12380 |
. . . . . . 7
      
 
          |
| 80 | 78, 79 | syl 17 |
. . . . . 6
      
      |
| 81 | 80 | sselda 3603 |
. . . . 5
 
             |
| 82 | 81, 36 | syldan 487 |
. . . 4
 
             |
| 83 | 60, 76, 30, 82 | seqcl2 12819 |
. . 3
           |
| 84 | | elsni 4194 |
. . 3
          
      |
| 85 | 83, 84 | syl 17 |
. 2
         |
| 86 | 57, 85 | eqtrd 2656 |
1
         |