MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqz Structured version   Visualization version   Unicode version

Theorem seqz 12849
Description: If the operation  .+ has an absorbing element  Z (a.k.a. zero element), then any sequence containing a  Z evaluates to  Z. (Contributed by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqhomo.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqhomo.2  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
seqz.3  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  Z )
seqz.4  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  Z )
seqz.5  |-  ( ph  ->  K  e.  ( M ... N ) )
seqz.6  |-  ( ph  ->  N  e.  V )
seqz.7  |-  ( ph  ->  ( F `  K
)  =  Z )
Assertion
Ref Expression
seqz  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z )
Distinct variable groups:    x, y, F    x, M, y    x, N, y    ph, x, y   
x, K, y    x,  .+ , y    x, S, y   
x, Z, y
Allowed substitution hints:    V( x, y)

Proof of Theorem seqz
StepHypRef Expression
1 seqz.5 . . . 4  |-  ( ph  ->  K  e.  ( M ... N ) )
2 elfzuz 12338 . . . 4  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
31, 2syl 17 . . 3  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
4 eluzelz 11697 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
53, 4syl 17 . . . . . . . 8  |-  ( ph  ->  K  e.  ZZ )
6 seq1 12814 . . . . . . . 8  |-  ( K  e.  ZZ  ->  (  seq K (  .+  ,  F ) `  K
)  =  ( F `
 K ) )
75, 6syl 17 . . . . . . 7  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 K )  =  ( F `  K
) )
8 seqz.7 . . . . . . 7  |-  ( ph  ->  ( F `  K
)  =  Z )
97, 8eqtrd 2656 . . . . . 6  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 K )  =  Z )
10 seqeq1 12804 . . . . . . . 8  |-  ( K  =  M  ->  seq K (  .+  ,  F )  =  seq M (  .+  ,  F ) )
1110fveq1d 6193 . . . . . . 7  |-  ( K  =  M  ->  (  seq K (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  K
) )
1211eqeq1d 2624 . . . . . 6  |-  ( K  =  M  ->  (
(  seq K (  .+  ,  F ) `  K
)  =  Z  <->  (  seq M (  .+  ,  F ) `  K
)  =  Z ) )
139, 12syl5ibcom 235 . . . . 5  |-  ( ph  ->  ( K  =  M  ->  (  seq M
(  .+  ,  F
) `  K )  =  Z ) )
14 eluzel2 11692 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
153, 14syl 17 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
16 seqm1 12818 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  K  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
(  seq M (  .+  ,  F ) `  K
)  =  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  ( F `
 K ) ) )
1715, 16sylan 488 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  K
)  =  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  ( F `
 K ) ) )
188adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  K )  =  Z )
1918oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  ( F `
 K ) )  =  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  Z ) )
20 eluzp1m1 11711 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  K  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( K  -  1 )  e.  ( ZZ>= `  M ) )
2115, 20sylan 488 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( K  -  1 )  e.  ( ZZ>= `  M )
)
22 fzssp1 12384 . . . . . . . . . . . . . . 15  |-  ( M ... ( K  - 
1 ) )  C_  ( M ... ( ( K  -  1 )  +  1 ) )
235zcnd 11483 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  K  e.  CC )
24 ax-1cn 9994 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
25 npcan 10290 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  - 
1 )  +  1 )  =  K )
2623, 24, 25sylancl 694 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( K  - 
1 )  +  1 )  =  K )
2726oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M ... (
( K  -  1 )  +  1 ) )  =  ( M ... K ) )
2822, 27syl5sseq 3653 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ... ( K  -  1 ) )  C_  ( M ... K ) )
29 elfzuz3 12339 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)
301, 29syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
31 fzss2 12381 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( M ... K )  C_  ( M ... N ) )
3230, 31syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ... K
)  C_  ( M ... N ) )
3328, 32sstrd 3613 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M ... ( K  -  1 ) )  C_  ( M ... N ) )
3433adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M ... ( K  -  1 ) )  C_  ( M ... N ) )
3534sselda 3603 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  x  e.  ( M ... N
) )
36 seqhomo.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
3736adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( M ... N
) )  ->  ( F `  x )  e.  S )
3835, 37syldan 487 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( F `  x )  e.  S )
39 seqhomo.1 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
4039adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
4121, 38, 40seqcl 12821 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  e.  S )
42 seqz.4 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  Z )
4342ralrimiva 2966 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  S  ( x  .+  Z )  =  Z )
4443adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. x  e.  S  ( x  .+  Z )  =  Z )
45 oveq1 6657 . . . . . . . . . . 11  |-  ( x  =  (  seq M
(  .+  ,  F
) `  ( K  -  1 ) )  ->  ( x  .+  Z )  =  ( (  seq M ( 
.+  ,  F ) `
 ( K  - 
1 ) )  .+  Z ) )
4645eqeq1d 2624 . . . . . . . . . 10  |-  ( x  =  (  seq M
(  .+  ,  F
) `  ( K  -  1 ) )  ->  ( ( x 
.+  Z )  =  Z  <->  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  Z )  =  Z ) )
4746rspcv 3305 . . . . . . . . 9  |-  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  e.  S  -> 
( A. x  e.  S  ( x  .+  Z )  =  Z  ->  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  Z )  =  Z ) )
4841, 44, 47sylc 65 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  Z )  =  Z )
4919, 48eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq M (  .+  ,  F ) `  ( K  -  1 ) )  .+  ( F `
 K ) )  =  Z )
5017, 49eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  K
)  =  Z )
5150ex 450 . . . . 5  |-  ( ph  ->  ( K  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
(  seq M (  .+  ,  F ) `  K
)  =  Z ) )
52 uzp1 11721 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K  =  M  \/  K  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
533, 52syl 17 . . . . 5  |-  ( ph  ->  ( K  =  M  \/  K  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
5413, 51, 53mpjaod 396 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  Z )
5554, 8eqtr4d 2659 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  ( F `  K
) )
56 eqidd 2623 . . 3  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  x )  =  ( F `  x ) )
573, 55, 30, 56seqfveq2 12823 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq K ( 
.+  ,  F ) `
 N ) )
58 fvex 6201 . . . . . 6  |-  ( F `
 K )  e. 
_V
5958elsn 4192 . . . . 5  |-  ( ( F `  K )  e.  { Z }  <->  ( F `  K )  =  Z )
608, 59sylibr 224 . . . 4  |-  ( ph  ->  ( F `  K
)  e.  { Z } )
61 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  x  e.  { Z } )
62 velsn 4193 . . . . . . . 8  |-  ( x  e.  { Z }  <->  x  =  Z )
6361, 62sylib 208 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  x  =  Z )
6463oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  ( x  .+  y )  =  ( Z  .+  y ) )
65 simprr 796 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  y  e.  S )
66 seqz.3 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  Z )
6766ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. x  e.  S  ( Z  .+  x )  =  Z )
6867adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  A. x  e.  S  ( Z  .+  x )  =  Z )
69 oveq2 6658 . . . . . . . . 9  |-  ( x  =  y  ->  ( Z  .+  x )  =  ( Z  .+  y
) )
7069eqeq1d 2624 . . . . . . . 8  |-  ( x  =  y  ->  (
( Z  .+  x
)  =  Z  <->  ( Z  .+  y )  =  Z ) )
7170rspcv 3305 . . . . . . 7  |-  ( y  e.  S  ->  ( A. x  e.  S  ( Z  .+  x )  =  Z  ->  ( Z  .+  y )  =  Z ) )
7265, 68, 71sylc 65 . . . . . 6  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  ( Z  .+  y )  =  Z )
7364, 72eqtrd 2656 . . . . 5  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  ( x  .+  y )  =  Z )
74 ovex 6678 . . . . . 6  |-  ( x 
.+  y )  e. 
_V
7574elsn 4192 . . . . 5  |-  ( ( x  .+  y )  e.  { Z }  <->  ( x  .+  y )  =  Z )
7673, 75sylibr 224 . . . 4  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  ( x  .+  y )  e.  { Z } )
77 peano2uz 11741 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K  +  1 )  e.  ( ZZ>= `  M )
)
783, 77syl 17 . . . . . . 7  |-  ( ph  ->  ( K  +  1 )  e.  ( ZZ>= `  M ) )
79 fzss1 12380 . . . . . . 7  |-  ( ( K  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ( K  +  1 ) ... N )  C_  ( M ... N ) )
8078, 79syl 17 . . . . . 6  |-  ( ph  ->  ( ( K  + 
1 ) ... N
)  C_  ( M ... N ) )
8180sselda 3603 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  x  e.  ( M ... N
) )
8281, 36syldan 487 . . . 4  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  x )  e.  S )
8360, 76, 30, 82seqcl2 12819 . . 3  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 N )  e. 
{ Z } )
84 elsni 4194 . . 3  |-  ( (  seq K (  .+  ,  F ) `  N
)  e.  { Z }  ->  (  seq K
(  .+  ,  F
) `  N )  =  Z )
8583, 84syl 17 . 2  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 N )  =  Z )
8657, 85eqtrd 2656 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   {csn 4177   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  bcval5  13105  elqaalem2  24075  lgsne0  25060
  Copyright terms: Public domain W3C validator