Proof of Theorem setsstruct
| Step | Hyp | Ref
| Expression |
| 1 | | isstruct 15870 |
. . . . . 6
 Struct                  |
| 2 | | simp2 1062 |
. . . . . . . . . 10
    Struct           Struct  
   |
| 3 | | simp3l 1089 |
. . . . . . . . . 10
    Struct             |
| 4 | | 1z 11407 |
. . . . . . . . . . . . . . . 16
 |
| 5 | | nnge1 11046 |
. . . . . . . . . . . . . . . 16
   |
| 6 | | eluzuzle 11696 |
. . . . . . . . . . . . . . . 16
       
       |
| 7 | 4, 5, 6 | sylancr 695 |
. . . . . . . . . . . . . . 15
             |
| 8 | | elnnuz 11724 |
. . . . . . . . . . . . . . 15

      |
| 9 | 7, 8 | syl6ibr 242 |
. . . . . . . . . . . . . 14
         |
| 10 | 9 | adantld 483 |
. . . . . . . . . . . . 13
  
        |
| 11 | 10 | 3ad2ant1 1082 |
. . . . . . . . . . . 12
 
  
        |
| 12 | 11 | a1d 25 |
. . . . . . . . . . 11
 
  Struct          
    |
| 13 | 12 | 3imp 1256 |
. . . . . . . . . 10
    Struct             |
| 14 | 2, 3, 13 | 3jca 1242 |
. . . . . . . . 9
    Struct            Struct   
   |
| 15 | | op1stg 7180 |
. . . . . . . . . . . . . . . 16
 
          |
| 16 | 15 | breq2d 4665 |
. . . . . . . . . . . . . . 15
 
        
   |
| 17 | | eqidd 2623 |
. . . . . . . . . . . . . . 15
 
   |
| 18 | 16, 17, 15 | ifbieq12d 4113 |
. . . . . . . . . . . . . 14
 
                           |
| 19 | 18 | 3adant3 1081 |
. . . . . . . . . . . . 13
 
  
                  
 
   |
| 20 | 19 | adantr 481 |
. . . . . . . . . . . 12
    
     
 
                   
    |
| 21 | | eluz2 11693 |
. . . . . . . . . . . . . . . 16
         |
| 22 | | zre 11381 |
. . . . . . . . . . . . . . . . . . . 20
   |
| 23 | 22 | rexrd 10089 |
. . . . . . . . . . . . . . . . . . 19
   |
| 24 | 23 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . . 18
 
   |
| 25 | | zre 11381 |
. . . . . . . . . . . . . . . . . . . 20
   |
| 26 | 25 | rexrd 10089 |
. . . . . . . . . . . . . . . . . . 19
   |
| 27 | 26 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . 18
 
   |
| 28 | | simp3 1063 |
. . . . . . . . . . . . . . . . . 18
 
   |
| 29 | 24, 27, 28 | 3jca 1242 |
. . . . . . . . . . . . . . . . 17
 
     |
| 30 | 29 | a1d 25 |
. . . . . . . . . . . . . . . 16
 
         |
| 31 | 21, 30 | sylbi 207 |
. . . . . . . . . . . . . . 15
    
 
      |
| 32 | 31 | adantl 482 |
. . . . . . . . . . . . . 14
 
             |
| 33 | 32 | impcom 446 |
. . . . . . . . . . . . 13
    
     

   |
| 34 | | xrmineq 12011 |
. . . . . . . . . . . . 13
    
 
   |
| 35 | 33, 34 | syl 17 |
. . . . . . . . . . . 12
    
     
 
 
   |
| 36 | 20, 35 | eqtr2d 2657 |
. . . . . . . . . . 11
    
     
                     |
| 37 | 36 | 3adant2 1080 |
. . . . . . . . . 10
    Struct                                |
| 38 | | op2ndg 7181 |
. . . . . . . . . . . . . . 15
 
          |
| 39 | 38 | eqcomd 2628 |
. . . . . . . . . . . . . 14
 
          |
| 40 | 39 | breq2d 4665 |
. . . . . . . . . . . . 13
 
            |
| 41 | 40, 39, 17 | ifbieq12d 4113 |
. . . . . . . . . . . 12
 
   
                       |
| 42 | 41 | 3adant3 1081 |
. . . . . . . . . . 11
 
  
 
                      |
| 43 | 42 | 3ad2ant1 1082 |
. . . . . . . . . 10
    Struct            
 
                      |
| 44 | 37, 43 | opeq12d 4410 |
. . . . . . . . 9
    Struct                  
  
                                        |
| 45 | 14, 44 | jca 554 |
. . . . . . . 8
    Struct             Struct
  
    
 
                        
                     |
| 46 | 45 | 3exp 1264 |
. . . . . . 7
 
  Struct          
  Struct   
    
 
                        
                       |
| 47 | 46 | 3ad2ant1 1082 |
. . . . . 6
              Struct
  
 
       Struct   
    
 
                        
                       |
| 48 | 1, 47 | sylbi 207 |
. . . . 5
 Struct     Struct
  
 
       Struct   
    
 
                        
                       |
| 49 | 48 | pm2.43i 52 |
. . . 4
 Struct          
  Struct   
    
 
                        
                      |
| 50 | 49 | expdcom 455 |
. . 3
       Struct      Struct   
    
 
                        
                       |
| 51 | 50 | 3imp 1256 |
. 2
 
    Struct  
    Struct   
    
 
                        
                     |
| 52 | | setsstruct2 15896 |
. 2
   Struct   
    
 
                        
                  
 sSet     Struct    
 
    |
| 53 | 51, 52 | syl 17 |
1
 
    Struct  
   sSet     Struct  
 
 
    |