Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signslema Structured version   Visualization version   Unicode version

Theorem signslema 30639
Description: Computational part of signwlemn . (Contributed by Thierry Arnoux, 29-Sep-2018.)
Hypotheses
Ref Expression
signslema.1  |-  ( ph  ->  E  e.  NN0 )
signslema.2  |-  ( ph  ->  F  e.  NN0 )
signslema.3  |-  ( ph  ->  G  e.  NN0 )
signslema.4  |-  ( ph  ->  H  e.  NN0 )
signslema.5  |-  ( ph  ->  ( E  <  G  /\  -.  2  ||  ( G  -  E )
) )
signslema.6  |-  ( ph  ->  ( ( H  -  G )  -  ( F  -  E )
)  e.  { 0 ,  2 } )
Assertion
Ref Expression
signslema  |-  ( ph  ->  ( F  <  H  /\  -.  2  ||  ( H  -  F )
) )

Proof of Theorem signslema
StepHypRef Expression
1 signslema.5 . . . . . 6  |-  ( ph  ->  ( E  <  G  /\  -.  2  ||  ( G  -  E )
) )
21simpld 475 . . . . 5  |-  ( ph  ->  E  <  G )
32adantr 481 . . . 4  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  0 )  ->  E  <  G )
4 signslema.4 . . . . . . . . . 10  |-  ( ph  ->  H  e.  NN0 )
54nn0cnd 11353 . . . . . . . . 9  |-  ( ph  ->  H  e.  CC )
6 signslema.2 . . . . . . . . . 10  |-  ( ph  ->  F  e.  NN0 )
76nn0cnd 11353 . . . . . . . . 9  |-  ( ph  ->  F  e.  CC )
85, 7subcld 10392 . . . . . . . 8  |-  ( ph  ->  ( H  -  F
)  e.  CC )
9 signslema.3 . . . . . . . . . 10  |-  ( ph  ->  G  e.  NN0 )
109nn0cnd 11353 . . . . . . . . 9  |-  ( ph  ->  G  e.  CC )
11 signslema.1 . . . . . . . . . 10  |-  ( ph  ->  E  e.  NN0 )
1211nn0cnd 11353 . . . . . . . . 9  |-  ( ph  ->  E  e.  CC )
1310, 12subcld 10392 . . . . . . . 8  |-  ( ph  ->  ( G  -  E
)  e.  CC )
148, 13subeq0ad 10402 . . . . . . 7  |-  ( ph  ->  ( ( ( H  -  F )  -  ( G  -  E
) )  =  0  <-> 
( H  -  F
)  =  ( G  -  E ) ) )
1514biimpa 501 . . . . . 6  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  0 )  ->  ( H  -  F )  =  ( G  -  E ) )
1615breq2d 4665 . . . . 5  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  0 )  ->  (
0  <  ( H  -  F )  <->  0  <  ( G  -  E ) ) )
176nn0red 11352 . . . . . . 7  |-  ( ph  ->  F  e.  RR )
184nn0red 11352 . . . . . . 7  |-  ( ph  ->  H  e.  RR )
1917, 18posdifd 10614 . . . . . 6  |-  ( ph  ->  ( F  <  H  <->  0  <  ( H  -  F ) ) )
2019adantr 481 . . . . 5  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  0 )  ->  ( F  <  H  <->  0  <  ( H  -  F ) ) )
2111nn0red 11352 . . . . . . 7  |-  ( ph  ->  E  e.  RR )
229nn0red 11352 . . . . . . 7  |-  ( ph  ->  G  e.  RR )
2321, 22posdifd 10614 . . . . . 6  |-  ( ph  ->  ( E  <  G  <->  0  <  ( G  -  E ) ) )
2423adantr 481 . . . . 5  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  0 )  ->  ( E  <  G  <->  0  <  ( G  -  E ) ) )
2516, 20, 243bitr4rd 301 . . . 4  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  0 )  ->  ( E  <  G  <->  F  <  H ) )
263, 25mpbid 222 . . 3  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  0 )  ->  F  <  H )
27 0red 10041 . . . . 5  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  2 )  ->  0  e.  RR )
2822, 21resubcld 10458 . . . . . 6  |-  ( ph  ->  ( G  -  E
)  e.  RR )
2928adantr 481 . . . . 5  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  2 )  ->  ( G  -  E )  e.  RR )
3018, 17resubcld 10458 . . . . . 6  |-  ( ph  ->  ( H  -  F
)  e.  RR )
3130adantr 481 . . . . 5  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  2 )  ->  ( H  -  F )  e.  RR )
322adantr 481 . . . . . 6  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  2 )  ->  E  <  G )
3323adantr 481 . . . . . 6  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  2 )  ->  ( E  <  G  <->  0  <  ( G  -  E ) ) )
3432, 33mpbid 222 . . . . 5  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  2 )  ->  0  <  ( G  -  E
) )
35 2pos 11112 . . . . . . 7  |-  0  <  2
36 breq2 4657 . . . . . . 7  |-  ( ( ( H  -  F
)  -  ( G  -  E ) )  =  2  ->  (
0  <  ( ( H  -  F )  -  ( G  -  E ) )  <->  0  <  2 ) )
3735, 36mpbiri 248 . . . . . 6  |-  ( ( ( H  -  F
)  -  ( G  -  E ) )  =  2  ->  0  <  ( ( H  -  F )  -  ( G  -  E )
) )
3828, 30posdifd 10614 . . . . . . 7  |-  ( ph  ->  ( ( G  -  E )  <  ( H  -  F )  <->  0  <  ( ( H  -  F )  -  ( G  -  E
) ) ) )
3938biimpar 502 . . . . . 6  |-  ( (
ph  /\  0  <  ( ( H  -  F
)  -  ( G  -  E ) ) )  ->  ( G  -  E )  <  ( H  -  F )
)
4037, 39sylan2 491 . . . . 5  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  2 )  ->  ( G  -  E )  <  ( H  -  F
) )
4127, 29, 31, 34, 40lttrd 10198 . . . 4  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  2 )  ->  0  <  ( H  -  F
) )
4219adantr 481 . . . 4  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  2 )  ->  ( F  <  H  <->  0  <  ( H  -  F ) ) )
4341, 42mpbird 247 . . 3  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  2 )  ->  F  <  H )
445, 10, 7, 12sub4d 10441 . . . . 5  |-  ( ph  ->  ( ( H  -  G )  -  ( F  -  E )
)  =  ( ( H  -  F )  -  ( G  -  E ) ) )
45 signslema.6 . . . . 5  |-  ( ph  ->  ( ( H  -  G )  -  ( F  -  E )
)  e.  { 0 ,  2 } )
4644, 45eqeltrrd 2702 . . . 4  |-  ( ph  ->  ( ( H  -  F )  -  ( G  -  E )
)  e.  { 0 ,  2 } )
47 ovex 6678 . . . . 5  |-  ( ( H  -  F )  -  ( G  -  E ) )  e. 
_V
4847elpr 4198 . . . 4  |-  ( ( ( H  -  F
)  -  ( G  -  E ) )  e.  { 0 ,  2 }  <->  ( (
( H  -  F
)  -  ( G  -  E ) )  =  0  \/  (
( H  -  F
)  -  ( G  -  E ) )  =  2 ) )
4946, 48sylib 208 . . 3  |-  ( ph  ->  ( ( ( H  -  F )  -  ( G  -  E
) )  =  0  \/  ( ( H  -  F )  -  ( G  -  E
) )  =  2 ) )
5026, 43, 49mpjaodan 827 . 2  |-  ( ph  ->  F  <  H )
511simprd 479 . . . . 5  |-  ( ph  ->  -.  2  ||  ( G  -  E )
)
5251adantr 481 . . . 4  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  0 )  ->  -.  2  ||  ( G  -  E ) )
5315breq2d 4665 . . . 4  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  0 )  ->  (
2  ||  ( H  -  F )  <->  2  ||  ( G  -  E
) ) )
5452, 53mtbird 315 . . 3  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  0 )  ->  -.  2  ||  ( H  -  F ) )
55 2z 11409 . . . . . . 7  |-  2  e.  ZZ
569nn0zd 11480 . . . . . . . 8  |-  ( ph  ->  G  e.  ZZ )
5711nn0zd 11480 . . . . . . . 8  |-  ( ph  ->  E  e.  ZZ )
5856, 57zsubcld 11487 . . . . . . 7  |-  ( ph  ->  ( G  -  E
)  e.  ZZ )
59 dvdsaddr 15025 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  ( G  -  E
)  e.  ZZ )  ->  ( 2  ||  ( G  -  E
)  <->  2  ||  (
( G  -  E
)  +  2 ) ) )
6055, 58, 59sylancr 695 . . . . . 6  |-  ( ph  ->  ( 2  ||  ( G  -  E )  <->  2 
||  ( ( G  -  E )  +  2 ) ) )
6151, 60mtbid 314 . . . . 5  |-  ( ph  ->  -.  2  ||  (
( G  -  E
)  +  2 ) )
6261adantr 481 . . . 4  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  2 )  ->  -.  2  ||  ( ( G  -  E )  +  2 ) )
63 2cnd 11093 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
648, 13, 63subaddd 10410 . . . . . 6  |-  ( ph  ->  ( ( ( H  -  F )  -  ( G  -  E
) )  =  2  <-> 
( ( G  -  E )  +  2 )  =  ( H  -  F ) ) )
6564biimpa 501 . . . . 5  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  2 )  ->  (
( G  -  E
)  +  2 )  =  ( H  -  F ) )
6665breq2d 4665 . . . 4  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  2 )  ->  (
2  ||  ( ( G  -  E )  +  2 )  <->  2  ||  ( H  -  F
) ) )
6762, 66mtbid 314 . . 3  |-  ( (
ph  /\  ( ( H  -  F )  -  ( G  -  E ) )  =  2 )  ->  -.  2  ||  ( H  -  F ) )
6854, 67, 49mpjaodan 827 . 2  |-  ( ph  ->  -.  2  ||  ( H  -  F )
)
6950, 68jca 554 1  |-  ( ph  ->  ( F  <  H  /\  -.  2  ||  ( H  -  F )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {cpr 4179   class class class wbr 4653  (class class class)co 6650   RRcr 9935   0cc0 9936    + caddc 9939    < clt 10074    - cmin 10266   2c2 11070   NN0cn0 11292   ZZcz 11377    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-dvds 14984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator