Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvc Structured version   Visualization version   Unicode version

Theorem signstfvc 30651
Description: Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
signsv.w  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
signsv.t  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
signsv.v  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
Assertion
Ref Expression
signstfvc  |-  ( ( F  e. Word  RR  /\  G  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( T `
 ( F ++  G
) ) `  N
)  =  ( ( T `  F ) `
 N ) )
Distinct variable groups:    a, b,  .+^    f, i, n, F    f, W, i, n    i, N, n
Allowed substitution hints:    .+^ ( f, i,
j, n)    T( f,
i, j, n, a, b)    F( j, a, b)    G( f, i, j, n, a, b)    N( f, j, a, b)    V( f, i, j, n, a, b)    W( j, a, b)

Proof of Theorem signstfvc
Dummy variables  e 
g  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . . . 8  |-  ( g  =  (/)  ->  ( F ++  g )  =  ( F ++  (/) ) )
21fveq2d 6195 . . . . . . 7  |-  ( g  =  (/)  ->  ( T `
 ( F ++  g
) )  =  ( T `  ( F ++  (/) ) ) )
32fveq1d 6193 . . . . . 6  |-  ( g  =  (/)  ->  ( ( T `  ( F ++  g ) ) `  N )  =  ( ( T `  ( F ++  (/) ) ) `  N ) )
43eqeq1d 2624 . . . . 5  |-  ( g  =  (/)  ->  ( ( ( T `  ( F ++  g ) ) `  N )  =  ( ( T `  F
) `  N )  <->  ( ( T `  ( F ++  (/) ) ) `  N )  =  ( ( T `  F
) `  N )
) )
54imbi2d 330 . . . 4  |-  ( g  =  (/)  ->  ( ( ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( T `  ( F ++  g )
) `  N )  =  ( ( T `
 F ) `  N ) )  <->  ( ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( T `
 ( F ++  (/) ) ) `
 N )  =  ( ( T `  F ) `  N
) ) ) )
6 oveq2 6658 . . . . . . . 8  |-  ( g  =  e  ->  ( F ++  g )  =  ( F ++  e ) )
76fveq2d 6195 . . . . . . 7  |-  ( g  =  e  ->  ( T `  ( F ++  g ) )  =  ( T `  ( F ++  e ) ) )
87fveq1d 6193 . . . . . 6  |-  ( g  =  e  ->  (
( T `  ( F ++  g ) ) `  N )  =  ( ( T `  ( F ++  e ) ) `  N ) )
98eqeq1d 2624 . . . . 5  |-  ( g  =  e  ->  (
( ( T `  ( F ++  g )
) `  N )  =  ( ( T `
 F ) `  N )  <->  ( ( T `  ( F ++  e ) ) `  N )  =  ( ( T `  F
) `  N )
) )
109imbi2d 330 . . . 4  |-  ( g  =  e  ->  (
( ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( T `  ( F ++  g )
) `  N )  =  ( ( T `
 F ) `  N ) )  <->  ( ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( T `
 ( F ++  e
) ) `  N
)  =  ( ( T `  F ) `
 N ) ) ) )
11 oveq2 6658 . . . . . . . 8  |-  ( g  =  ( e ++  <" k "> )  ->  ( F ++  g )  =  ( F ++  (
e ++  <" k "> ) ) )
1211fveq2d 6195 . . . . . . 7  |-  ( g  =  ( e ++  <" k "> )  ->  ( T `  ( F ++  g ) )  =  ( T `  ( F ++  ( e ++  <" k "> ) ) ) )
1312fveq1d 6193 . . . . . 6  |-  ( g  =  ( e ++  <" k "> )  ->  ( ( T `  ( F ++  g )
) `  N )  =  ( ( T `
 ( F ++  (
e ++  <" k "> ) ) ) `
 N ) )
1413eqeq1d 2624 . . . . 5  |-  ( g  =  ( e ++  <" k "> )  ->  ( ( ( T `
 ( F ++  g
) ) `  N
)  =  ( ( T `  F ) `
 N )  <->  ( ( T `  ( F ++  ( e ++  <" k "> ) ) ) `
 N )  =  ( ( T `  F ) `  N
) ) )
1514imbi2d 330 . . . 4  |-  ( g  =  ( e ++  <" k "> )  ->  ( ( ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( T `
 ( F ++  g
) ) `  N
)  =  ( ( T `  F ) `
 N ) )  <-> 
( ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( T `  ( F ++  ( e ++  <" k "> ) ) ) `  N )  =  ( ( T `  F
) `  N )
) ) )
16 oveq2 6658 . . . . . . . 8  |-  ( g  =  G  ->  ( F ++  g )  =  ( F ++  G ) )
1716fveq2d 6195 . . . . . . 7  |-  ( g  =  G  ->  ( T `  ( F ++  g ) )  =  ( T `  ( F ++  G ) ) )
1817fveq1d 6193 . . . . . 6  |-  ( g  =  G  ->  (
( T `  ( F ++  g ) ) `  N )  =  ( ( T `  ( F ++  G ) ) `  N ) )
1918eqeq1d 2624 . . . . 5  |-  ( g  =  G  ->  (
( ( T `  ( F ++  g )
) `  N )  =  ( ( T `
 F ) `  N )  <->  ( ( T `  ( F ++  G ) ) `  N )  =  ( ( T `  F
) `  N )
) )
2019imbi2d 330 . . . 4  |-  ( g  =  G  ->  (
( ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( T `  ( F ++  g )
) `  N )  =  ( ( T `
 F ) `  N ) )  <->  ( ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( T `
 ( F ++  G
) ) `  N
)  =  ( ( T `  F ) `
 N ) ) ) )
21 ccatrid 13370 . . . . . . 7  |-  ( F  e. Word  RR  ->  ( F ++  (/) )  =  F
)
2221fveq2d 6195 . . . . . 6  |-  ( F  e. Word  RR  ->  ( T `
 ( F ++  (/) ) )  =  ( T `  F ) )
2322fveq1d 6193 . . . . 5  |-  ( F  e. Word  RR  ->  ( ( T `  ( F ++  (/) ) ) `  N
)  =  ( ( T `  F ) `
 N ) )
2423adantr 481 . . . 4  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( T `  ( F ++  (/) ) ) `
 N )  =  ( ( T `  F ) `  N
) )
25 simprl 794 . . . . . . . . . . . 12  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  F  e. Word  RR )
26 simpll 790 . . . . . . . . . . . 12  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  e  e. Word  RR )
27 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  k  e.  RR )
2827s1cld 13383 . . . . . . . . . . . 12  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  <" k ">  e. Word  RR )
29 ccatass 13371 . . . . . . . . . . . 12  |-  ( ( F  e. Word  RR  /\  e  e. Word  RR  /\  <" k ">  e. Word  RR )  ->  ( ( F ++  e ) ++  <" k "> )  =  ( F ++  ( e ++  <" k "> )
) )
3025, 26, 28, 29syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( ( F ++  e ) ++  <" k "> )  =  ( F ++  ( e ++  <" k "> )
) )
3130fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( T `  ( ( F ++  e
) ++  <" k "> ) )  =  ( T `  ( F ++  ( e ++  <" k "> ) ) ) )
3231fveq1d 6193 . . . . . . . . 9  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( ( T `
 ( ( F ++  e ) ++  <" k "> ) ) `  N )  =  ( ( T `  ( F ++  ( e ++  <" k "> ) ) ) `
 N ) )
33 ccatcl 13359 . . . . . . . . . . 11  |-  ( ( F  e. Word  RR  /\  e  e. Word  RR )  -> 
( F ++  e )  e. Word  RR )
3425, 26, 33syl2anc 693 . . . . . . . . . 10  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( F ++  e
)  e. Word  RR )
35 lencl 13324 . . . . . . . . . . . . . . 15  |-  ( F  e. Word  RR  ->  ( # `  F )  e.  NN0 )
3625, 35syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( # `  F
)  e.  NN0 )
3736nn0zd 11480 . . . . . . . . . . . . 13  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( # `  F
)  e.  ZZ )
38 lencl 13324 . . . . . . . . . . . . . . 15  |-  ( ( F ++  e )  e. Word  RR  ->  ( # `  ( F ++  e ) )  e. 
NN0 )
3934, 38syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( # `  ( F ++  e ) )  e. 
NN0 )
4039nn0zd 11480 . . . . . . . . . . . . 13  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( # `  ( F ++  e ) )  e.  ZZ )
4136nn0red 11352 . . . . . . . . . . . . . . 15  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( # `  F
)  e.  RR )
42 lencl 13324 . . . . . . . . . . . . . . . 16  |-  ( e  e. Word  RR  ->  ( # `  e )  e.  NN0 )
4326, 42syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( # `  e
)  e.  NN0 )
44 nn0addge1 11339 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  F
)  e.  RR  /\  ( # `  e )  e.  NN0 )  -> 
( # `  F )  <_  ( ( # `  F )  +  (
# `  e )
) )
4541, 43, 44syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( # `  F
)  <_  ( ( # `
 F )  +  ( # `  e
) ) )
46 ccatlen 13360 . . . . . . . . . . . . . . 15  |-  ( ( F  e. Word  RR  /\  e  e. Word  RR )  -> 
( # `  ( F ++  e ) )  =  ( ( # `  F
)  +  ( # `  e ) ) )
4725, 26, 46syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( # `  ( F ++  e ) )  =  ( ( # `  F
)  +  ( # `  e ) ) )
4845, 47breqtrrd 4681 . . . . . . . . . . . . 13  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( # `  F
)  <_  ( # `  ( F ++  e ) ) )
49 eluz2 11693 . . . . . . . . . . . . 13  |-  ( (
# `  ( F ++  e ) )  e.  ( ZZ>= `  ( # `  F
) )  <->  ( ( # `
 F )  e.  ZZ  /\  ( # `  ( F ++  e ) )  e.  ZZ  /\  ( # `  F )  <_  ( # `  ( F ++  e ) ) ) )
5037, 40, 48, 49syl3anbrc 1246 . . . . . . . . . . . 12  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( # `  ( F ++  e ) )  e.  ( ZZ>= `  ( # `  F
) ) )
51 fzoss2 12496 . . . . . . . . . . . 12  |-  ( (
# `  ( F ++  e ) )  e.  ( ZZ>= `  ( # `  F
) )  ->  (
0..^ ( # `  F
) )  C_  (
0..^ ( # `  ( F ++  e ) ) ) )
5250, 51syl 17 . . . . . . . . . . 11  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( 0..^ (
# `  F )
)  C_  ( 0..^ ( # `  ( F ++  e ) ) ) )
53 simprr 796 . . . . . . . . . . 11  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  N  e.  ( 0..^ ( # `  F
) ) )
5452, 53sseldd 3604 . . . . . . . . . 10  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  N  e.  ( 0..^ ( # `  ( F ++  e ) ) ) )
55 signsv.p . . . . . . . . . . 11  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
56 signsv.w . . . . . . . . . . 11  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
57 signsv.t . . . . . . . . . . 11  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
58 signsv.v . . . . . . . . . . 11  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
5955, 56, 57, 58signstfvp 30648 . . . . . . . . . 10  |-  ( ( ( F ++  e )  e. Word  RR  /\  k  e.  RR  /\  N  e.  ( 0..^ ( # `  ( F ++  e ) ) ) )  -> 
( ( T `  ( ( F ++  e
) ++  <" k "> ) ) `  N )  =  ( ( T `  ( F ++  e ) ) `  N ) )
6034, 27, 54, 59syl3anc 1326 . . . . . . . . 9  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( ( T `
 ( ( F ++  e ) ++  <" k "> ) ) `  N )  =  ( ( T `  ( F ++  e ) ) `  N ) )
6132, 60eqtr3d 2658 . . . . . . . 8  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( ( T `
 ( F ++  (
e ++  <" k "> ) ) ) `
 N )  =  ( ( T `  ( F ++  e )
) `  N )
)
6261adantr 481 . . . . . . 7  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  /\  ( ( T `
 ( F ++  e
) ) `  N
)  =  ( ( T `  F ) `
 N ) )  ->  ( ( T `
 ( F ++  (
e ++  <" k "> ) ) ) `
 N )  =  ( ( T `  ( F ++  e )
) `  N )
)
63 simpr 477 . . . . . . 7  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  /\  ( ( T `
 ( F ++  e
) ) `  N
)  =  ( ( T `  F ) `
 N ) )  ->  ( ( T `
 ( F ++  e
) ) `  N
)  =  ( ( T `  F ) `
 N ) )
6462, 63eqtrd 2656 . . . . . 6  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  /\  ( ( T `
 ( F ++  e
) ) `  N
)  =  ( ( T `  F ) `
 N ) )  ->  ( ( T `
 ( F ++  (
e ++  <" k "> ) ) ) `
 N )  =  ( ( T `  F ) `  N
) )
6564exp31 630 . . . . 5  |-  ( ( e  e. Word  RR  /\  k  e.  RR )  ->  ( ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( ( T `
 ( F ++  e
) ) `  N
)  =  ( ( T `  F ) `
 N )  -> 
( ( T `  ( F ++  ( e ++  <" k "> ) ) ) `  N )  =  ( ( T `  F
) `  N )
) ) )
6665a2d 29 . . . 4  |-  ( ( e  e. Word  RR  /\  k  e.  RR )  ->  ( ( ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( T `
 ( F ++  e
) ) `  N
)  =  ( ( T `  F ) `
 N ) )  ->  ( ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( T `
 ( F ++  (
e ++  <" k "> ) ) ) `
 N )  =  ( ( T `  F ) `  N
) ) ) )
675, 10, 15, 20, 24, 66wrdind 13476 . . 3  |-  ( G  e. Word  RR  ->  ( ( F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( T `  ( F ++  G )
) `  N )  =  ( ( T `
 F ) `  N ) ) )
68673impib 1262 . 2  |-  ( ( G  e. Word  RR  /\  F  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( T `
 ( F ++  G
) ) `  N
)  =  ( ( T `  F ) `
 N ) )
69683com12 1269 1  |-  ( ( F  e. Word  RR  /\  G  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( T `
 ( F ++  G
) ) `  N
)  =  ( ( T `  F ) `
 N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915   ifcif 4086   {cpr 4179   {ctp 4181   <.cop 4183   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266   -ucneg 10267   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   <"cs1 13294  sgncsgn 13826   sum_csu 14416   ndxcnx 15854   Basecbs 15857   +g cplusg 15941    gsumg cgsu 16101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303
This theorem is referenced by:  signstres  30652
  Copyright terms: Public domain W3C validator