Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstres Structured version   Visualization version   Unicode version

Theorem signstres 30652
Description: Restriction of a zero skipping sign to a subword. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
signsv.w  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
signsv.t  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
signsv.v  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
Assertion
Ref Expression
signstres  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( ( T `  F )  |`  (
0..^ N ) )  =  ( T `  ( F  |`  ( 0..^ N ) ) ) )
Distinct variable groups:    a, b,  .+^    f, i, n, F    f, W, i, n    f, N, i, n
Allowed substitution hints:    .+^ ( f, i,
j, n)    T( f,
i, j, n, a, b)    F( j, a, b)    N( j, a, b)    V( f, i, j, n, a, b)    W( j, a, b)

Proof of Theorem signstres
Dummy variables  g  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 signsv.p . . . . . . . 8  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
2 signsv.w . . . . . . . 8  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
3 signsv.t . . . . . . . 8  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
4 signsv.v . . . . . . . 8  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
51, 2, 3, 4signstf 30643 . . . . . . 7  |-  ( F  e. Word  RR  ->  ( T `
 F )  e. Word  RR )
6 wrdf 13310 . . . . . . 7  |-  ( ( T `  F )  e. Word  RR  ->  ( T `
 F ) : ( 0..^ ( # `  ( T `  F
) ) ) --> RR )
7 ffn 6045 . . . . . . 7  |-  ( ( T `  F ) : ( 0..^ (
# `  ( T `  F ) ) ) --> RR  ->  ( T `  F )  Fn  (
0..^ ( # `  ( T `  F )
) ) )
85, 6, 73syl 18 . . . . . 6  |-  ( F  e. Word  RR  ->  ( T `
 F )  Fn  ( 0..^ ( # `  ( T `  F
) ) ) )
91, 2, 3, 4signstlen 30644 . . . . . . . 8  |-  ( F  e. Word  RR  ->  ( # `  ( T `  F
) )  =  (
# `  F )
)
109oveq2d 6666 . . . . . . 7  |-  ( F  e. Word  RR  ->  ( 0..^ ( # `  ( T `  F )
) )  =  ( 0..^ ( # `  F
) ) )
1110fneq2d 5982 . . . . . 6  |-  ( F  e. Word  RR  ->  ( ( T `  F )  Fn  ( 0..^ (
# `  ( T `  F ) ) )  <-> 
( T `  F
)  Fn  ( 0..^ ( # `  F
) ) ) )
128, 11mpbid 222 . . . . 5  |-  ( F  e. Word  RR  ->  ( T `
 F )  Fn  ( 0..^ ( # `  F ) ) )
13 fnresin 29430 . . . . 5  |-  ( ( T `  F )  Fn  ( 0..^ (
# `  F )
)  ->  ( ( T `  F )  |`  ( 0..^ N ) )  Fn  ( ( 0..^ ( # `  F
) )  i^i  (
0..^ N ) ) )
1412, 13syl 17 . . . 4  |-  ( F  e. Word  RR  ->  ( ( T `  F )  |`  ( 0..^ N ) )  Fn  ( ( 0..^ ( # `  F
) )  i^i  (
0..^ N ) ) )
1514adantr 481 . . 3  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( ( T `  F )  |`  (
0..^ N ) )  Fn  ( ( 0..^ ( # `  F
) )  i^i  (
0..^ N ) ) )
16 elfzuz3 12339 . . . . . 6  |-  ( N  e.  ( 0 ... ( # `  F
) )  ->  ( # `
 F )  e.  ( ZZ>= `  N )
)
17 fzoss2 12496 . . . . . 6  |-  ( (
# `  F )  e.  ( ZZ>= `  N )  ->  ( 0..^ N ) 
C_  ( 0..^ (
# `  F )
) )
1816, 17syl 17 . . . . 5  |-  ( N  e.  ( 0 ... ( # `  F
) )  ->  (
0..^ N )  C_  ( 0..^ ( # `  F
) ) )
1918adantl 482 . . . 4  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( 0..^ N ) 
C_  ( 0..^ (
# `  F )
) )
20 incom 3805 . . . . . 6  |-  ( ( 0..^ N )  i^i  ( 0..^ ( # `  F ) ) )  =  ( ( 0..^ ( # `  F
) )  i^i  (
0..^ N ) )
21 df-ss 3588 . . . . . . 7  |-  ( ( 0..^ N )  C_  ( 0..^ ( # `  F
) )  <->  ( (
0..^ N )  i^i  ( 0..^ ( # `  F ) ) )  =  ( 0..^ N ) )
2221biimpi 206 . . . . . 6  |-  ( ( 0..^ N )  C_  ( 0..^ ( # `  F
) )  ->  (
( 0..^ N )  i^i  ( 0..^ (
# `  F )
) )  =  ( 0..^ N ) )
2320, 22syl5eqr 2670 . . . . 5  |-  ( ( 0..^ N )  C_  ( 0..^ ( # `  F
) )  ->  (
( 0..^ ( # `  F ) )  i^i  ( 0..^ N ) )  =  ( 0..^ N ) )
2423fneq2d 5982 . . . 4  |-  ( ( 0..^ N )  C_  ( 0..^ ( # `  F
) )  ->  (
( ( T `  F )  |`  (
0..^ N ) )  Fn  ( ( 0..^ ( # `  F
) )  i^i  (
0..^ N ) )  <-> 
( ( T `  F )  |`  (
0..^ N ) )  Fn  ( 0..^ N ) ) )
2519, 24syl 17 . . 3  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( ( ( T `
 F )  |`  ( 0..^ N ) )  Fn  ( ( 0..^ ( # `  F
) )  i^i  (
0..^ N ) )  <-> 
( ( T `  F )  |`  (
0..^ N ) )  Fn  ( 0..^ N ) ) )
2615, 25mpbid 222 . 2  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( ( T `  F )  |`  (
0..^ N ) )  Fn  ( 0..^ N ) )
27 wrdres 30617 . . . 4  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( F  |`  (
0..^ N ) )  e. Word  RR )
281, 2, 3, 4signstf 30643 . . . 4  |-  ( ( F  |`  ( 0..^ N ) )  e. Word  RR  ->  ( T `  ( F  |`  ( 0..^ N ) ) )  e. Word  RR )
29 wrdf 13310 . . . 4  |-  ( ( T `  ( F  |`  ( 0..^ N ) ) )  e. Word  RR  ->  ( T `  ( F  |`  ( 0..^ N ) ) ) : ( 0..^ ( # `  ( T `  ( F  |`  ( 0..^ N ) ) ) ) ) --> RR )
30 ffn 6045 . . . 4  |-  ( ( T `  ( F  |`  ( 0..^ N ) ) ) : ( 0..^ ( # `  ( T `  ( F  |`  ( 0..^ N ) ) ) ) ) --> RR  ->  ( T `  ( F  |`  (
0..^ N ) ) )  Fn  ( 0..^ ( # `  ( T `  ( F  |`  ( 0..^ N ) ) ) ) ) )
3127, 28, 29, 304syl 19 . . 3  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( T `  ( F  |`  ( 0..^ N ) ) )  Fn  ( 0..^ ( # `  ( T `  ( F  |`  ( 0..^ N ) ) ) ) ) )
321, 2, 3, 4signstlen 30644 . . . . . . 7  |-  ( ( F  |`  ( 0..^ N ) )  e. Word  RR  ->  ( # `  ( T `  ( F  |`  ( 0..^ N ) ) ) )  =  ( # `  ( F  |`  ( 0..^ N ) ) ) )
3327, 32syl 17 . . . . . 6  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( # `  ( T `
 ( F  |`  ( 0..^ N ) ) ) )  =  (
# `  ( F  |`  ( 0..^ N ) ) ) )
34 wrdfn 13319 . . . . . . . 8  |-  ( F  e. Word  RR  ->  F  Fn  ( 0..^ ( # `  F
) ) )
35 fnssres 6004 . . . . . . . 8  |-  ( ( F  Fn  ( 0..^ ( # `  F
) )  /\  (
0..^ N )  C_  ( 0..^ ( # `  F
) ) )  -> 
( F  |`  (
0..^ N ) )  Fn  ( 0..^ N ) )
3634, 18, 35syl2an 494 . . . . . . 7  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( F  |`  (
0..^ N ) )  Fn  ( 0..^ N ) )
37 hashfn 13164 . . . . . . 7  |-  ( ( F  |`  ( 0..^ N ) )  Fn  ( 0..^ N )  ->  ( # `  ( F  |`  ( 0..^ N ) ) )  =  ( # `  (
0..^ N ) ) )
3836, 37syl 17 . . . . . 6  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( # `  ( F  |`  ( 0..^ N ) ) )  =  (
# `  ( 0..^ N ) ) )
39 elfznn0 12433 . . . . . . . 8  |-  ( N  e.  ( 0 ... ( # `  F
) )  ->  N  e.  NN0 )
40 hashfzo0 13217 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( # `  ( 0..^ N ) )  =  N )
4139, 40syl 17 . . . . . . 7  |-  ( N  e.  ( 0 ... ( # `  F
) )  ->  ( # `
 ( 0..^ N ) )  =  N )
4241adantl 482 . . . . . 6  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( # `  ( 0..^ N ) )  =  N )
4333, 38, 423eqtrd 2660 . . . . 5  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( # `  ( T `
 ( F  |`  ( 0..^ N ) ) ) )  =  N )
4443oveq2d 6666 . . . 4  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( 0..^ ( # `  ( T `  ( F  |`  ( 0..^ N ) ) ) ) )  =  ( 0..^ N ) )
4544fneq2d 5982 . . 3  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( ( T `  ( F  |`  ( 0..^ N ) ) )  Fn  ( 0..^ (
# `  ( T `  ( F  |`  (
0..^ N ) ) ) ) )  <->  ( T `  ( F  |`  (
0..^ N ) ) )  Fn  ( 0..^ N ) ) )
4631, 45mpbid 222 . 2  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( T `  ( F  |`  ( 0..^ N ) ) )  Fn  ( 0..^ N ) )
47 fvres 6207 . . . . 5  |-  ( m  e.  ( 0..^ N )  ->  ( (
( T `  F
)  |`  ( 0..^ N ) ) `  m
)  =  ( ( T `  F ) `
 m ) )
4847ad3antlr 767 . . . 4  |-  ( ( ( ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `
 F ) ) )  /\  m  e.  ( 0..^ N ) )  /\  g  e. Word  RR )  /\  F  =  ( ( F  |`  ( 0..^ N ) ) ++  g ) )  -> 
( ( ( T `
 F )  |`  ( 0..^ N ) ) `
 m )  =  ( ( T `  F ) `  m
) )
49 simpr 477 . . . . . 6  |-  ( ( ( ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `
 F ) ) )  /\  m  e.  ( 0..^ N ) )  /\  g  e. Word  RR )  /\  F  =  ( ( F  |`  ( 0..^ N ) ) ++  g ) )  ->  F  =  ( ( F  |`  ( 0..^ N ) ) ++  g ) )
5049fveq2d 6195 . . . . 5  |-  ( ( ( ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `
 F ) ) )  /\  m  e.  ( 0..^ N ) )  /\  g  e. Word  RR )  /\  F  =  ( ( F  |`  ( 0..^ N ) ) ++  g ) )  -> 
( T `  F
)  =  ( T `
 ( ( F  |`  ( 0..^ N ) ) ++  g ) ) )
5150fveq1d 6193 . . . 4  |-  ( ( ( ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `
 F ) ) )  /\  m  e.  ( 0..^ N ) )  /\  g  e. Word  RR )  /\  F  =  ( ( F  |`  ( 0..^ N ) ) ++  g ) )  -> 
( ( T `  F ) `  m
)  =  ( ( T `  ( ( F  |`  ( 0..^ N ) ) ++  g ) ) `  m
) )
5227ad3antrrr 766 . . . . 5  |-  ( ( ( ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `
 F ) ) )  /\  m  e.  ( 0..^ N ) )  /\  g  e. Word  RR )  /\  F  =  ( ( F  |`  ( 0..^ N ) ) ++  g ) )  -> 
( F  |`  (
0..^ N ) )  e. Word  RR )
53 simplr 792 . . . . 5  |-  ( ( ( ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `
 F ) ) )  /\  m  e.  ( 0..^ N ) )  /\  g  e. Word  RR )  /\  F  =  ( ( F  |`  ( 0..^ N ) ) ++  g ) )  -> 
g  e. Word  RR )
5438, 42eqtrd 2656 . . . . . . . . 9  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( # `  ( F  |`  ( 0..^ N ) ) )  =  N )
5554oveq2d 6666 . . . . . . . 8  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( 0..^ ( # `  ( F  |`  (
0..^ N ) ) ) )  =  ( 0..^ N ) )
5655eleq2d 2687 . . . . . . 7  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( m  e.  ( 0..^ ( # `  ( F  |`  ( 0..^ N ) ) ) )  <-> 
m  e.  ( 0..^ N ) ) )
5756biimpar 502 . . . . . 6  |-  ( ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  /\  m  e.  ( 0..^ N ) )  ->  m  e.  ( 0..^ ( # `  ( F  |`  ( 0..^ N ) ) ) ) )
5857ad2antrr 762 . . . . 5  |-  ( ( ( ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `
 F ) ) )  /\  m  e.  ( 0..^ N ) )  /\  g  e. Word  RR )  /\  F  =  ( ( F  |`  ( 0..^ N ) ) ++  g ) )  ->  m  e.  ( 0..^ ( # `  ( F  |`  ( 0..^ N ) ) ) ) )
591, 2, 3, 4signstfvc 30651 . . . . 5  |-  ( ( ( F  |`  (
0..^ N ) )  e. Word  RR  /\  g  e. Word  RR  /\  m  e.  ( 0..^ ( # `  ( F  |`  (
0..^ N ) ) ) ) )  -> 
( ( T `  ( ( F  |`  ( 0..^ N ) ) ++  g ) ) `  m )  =  ( ( T `  ( F  |`  ( 0..^ N ) ) ) `  m ) )
6052, 53, 58, 59syl3anc 1326 . . . 4  |-  ( ( ( ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `
 F ) ) )  /\  m  e.  ( 0..^ N ) )  /\  g  e. Word  RR )  /\  F  =  ( ( F  |`  ( 0..^ N ) ) ++  g ) )  -> 
( ( T `  ( ( F  |`  ( 0..^ N ) ) ++  g ) ) `  m )  =  ( ( T `  ( F  |`  ( 0..^ N ) ) ) `  m ) )
6148, 51, 603eqtrd 2660 . . 3  |-  ( ( ( ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `
 F ) ) )  /\  m  e.  ( 0..^ N ) )  /\  g  e. Word  RR )  /\  F  =  ( ( F  |`  ( 0..^ N ) ) ++  g ) )  -> 
( ( ( T `
 F )  |`  ( 0..^ N ) ) `
 m )  =  ( ( T `  ( F  |`  ( 0..^ N ) ) ) `
 m ) )
62 wrdsplex 30618 . . . 4  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  ->  E. g  e. Word  RR F  =  ( ( F  |`  ( 0..^ N ) ) ++  g ) )
6362adantr 481 . . 3  |-  ( ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  /\  m  e.  ( 0..^ N ) )  ->  E. g  e. Word  RR F  =  ( ( F  |`  ( 0..^ N ) ) ++  g ) )
6461, 63r19.29a 3078 . 2  |-  ( ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  /\  m  e.  ( 0..^ N ) )  -> 
( ( ( T `
 F )  |`  ( 0..^ N ) ) `
 m )  =  ( ( T `  ( F  |`  ( 0..^ N ) ) ) `
 m ) )
6526, 46, 64eqfnfvd 6314 1  |-  ( ( F  e. Word  RR  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( ( T `  F )  |`  (
0..^ N ) )  =  ( T `  ( F  |`  ( 0..^ N ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    i^i cin 3573    C_ wss 3574   ifcif 4086   {cpr 4179   {ctp 4181   <.cop 4183    |-> cmpt 4729    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937    - cmin 10266   -ucneg 10267   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293  sgncsgn 13826   sum_csu 14416   ndxcnx 15854   Basecbs 15857   +g cplusg 15941    gsumg cgsu 16101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-sgn 13827  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator