Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfveq0a Structured version   Visualization version   Unicode version

Theorem signstfveq0a 30653
Description: Lemma for signstfveq0 30654. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
signsv.w  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
signsv.t  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
signsv.v  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
signstfveq0.1  |-  N  =  ( # `  F
)
Assertion
Ref Expression
signstfveq0a  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  N  e.  ( ZZ>= `  2 )
)
Distinct variable groups:    a, b,  .+^    f, i, n, F    f, W, i, n    F, a, b, f, i, n    N, a    f, b, i, n, N    T, a,
b
Allowed substitution hints:    .+^ ( f, i,
j, n)    T( f,
i, j, n)    F( j)    N( j)    V( f, i, j, n, a, b)    W( j, a, b)

Proof of Theorem signstfveq0a
StepHypRef Expression
1 simpll 790 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  F  e.  (Word  RR  \  { (/) } ) )
21eldifad 3586 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  F  e. Word  RR )
3 signstfveq0.1 . . . . 5  |-  N  =  ( # `  F
)
4 lencl 13324 . . . . 5  |-  ( F  e. Word  RR  ->  ( # `  F )  e.  NN0 )
53, 4syl5eqel 2705 . . . 4  |-  ( F  e. Word  RR  ->  N  e. 
NN0 )
62, 5syl 17 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  N  e.  NN0 )
7 eldifsn 4317 . . . . 5  |-  ( F  e.  (Word  RR  \  { (/) } )  <->  ( F  e. Word  RR  /\  F  =/=  (/) ) )
81, 7sylib 208 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( F  e. Word  RR  /\  F  =/=  (/) ) )
9 hasheq0 13154 . . . . . . 7  |-  ( F  e. Word  RR  ->  ( (
# `  F )  =  0  <->  F  =  (/) ) )
109necon3bid 2838 . . . . . 6  |-  ( F  e. Word  RR  ->  ( (
# `  F )  =/=  0  <->  F  =/=  (/) ) )
1110biimpar 502 . . . . 5  |-  ( ( F  e. Word  RR  /\  F  =/=  (/) )  ->  ( # `
 F )  =/=  0 )
123neeq1i 2858 . . . . 5  |-  ( N  =/=  0  <->  ( # `  F
)  =/=  0 )
1311, 12sylibr 224 . . . 4  |-  ( ( F  e. Word  RR  /\  F  =/=  (/) )  ->  N  =/=  0 )
148, 13syl 17 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  N  =/=  0 )
15 elnnne0 11306 . . 3  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  N  =/=  0 ) )
166, 14, 15sylanbrc 698 . 2  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  N  e.  NN )
17 simplr 792 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( F `  0 )  =/=  0 )
18 simpr 477 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( F `  ( N  -  1 ) )  =  0 )
1917, 18neeqtrrd 2868 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( F `  0 )  =/=  ( F `  ( N  -  1 ) ) )
2019necomd 2849 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( F `  ( N  -  1 ) )  =/=  ( F `  0 )
)
21 oveq1 6657 . . . . . 6  |-  ( N  =  1  ->  ( N  -  1 )  =  ( 1  -  1 ) )
22 1m1e0 11089 . . . . . 6  |-  ( 1  -  1 )  =  0
2321, 22syl6eq 2672 . . . . 5  |-  ( N  =  1  ->  ( N  -  1 )  =  0 )
2423fveq2d 6195 . . . 4  |-  ( N  =  1  ->  ( F `  ( N  -  1 ) )  =  ( F ` 
0 ) )
2524necon3i 2826 . . 3  |-  ( ( F `  ( N  -  1 ) )  =/=  ( F ` 
0 )  ->  N  =/=  1 )
2620, 25syl 17 . 2  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  N  =/=  1 )
27 eluz2b3 11762 . 2  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
2816, 26, 27sylanbrc 698 1  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  N  e.  ( ZZ>= `  2 )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   (/)c0 3915   ifcif 4086   {csn 4177   {cpr 4179   {ctp 4181   <.cop 4183    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937    - cmin 10266   -ucneg 10267   NNcn 11020   2c2 11070   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  sgncsgn 13826   sum_csu 14416   ndxcnx 15854   Basecbs 15857   +g cplusg 15941    gsumg cgsu 16101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299
This theorem is referenced by:  signstfveq0  30654
  Copyright terms: Public domain W3C validator