Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfveq0 Structured version   Visualization version   Unicode version

Theorem signstfveq0 30654
Description: In case the last letter is zero, the zero skipping sign is the same as the previous letter. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
signsv.w  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
signsv.t  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
signsv.v  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
signstfveq0.1  |-  N  =  ( # `  F
)
Assertion
Ref Expression
signstfveq0  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( T `  F ) `  ( N  -  1 ) )  =  ( ( T `  F
) `  ( N  -  2 ) ) )
Distinct variable groups:    a, b,  .+^    f, i, n, F    f, W, i, n    F, a, b, f, i, n    N, a    f, b, i, n, N    T, a,
b
Allowed substitution hints:    .+^ ( f, i,
j, n)    T( f,
i, j, n)    F( j)    N( j)    V( f, i, j, n, a, b)    W( j, a, b)

Proof of Theorem signstfveq0
StepHypRef Expression
1 simpll 790 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  F  e.  (Word  RR  \  { (/) } ) )
21eldifad 3586 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  F  e. Word  RR )
3 swrdcl 13419 . . . . 5  |-  ( F  e. Word  RR  ->  ( F substr  <. 0 ,  ( N  -  1 ) >.
)  e. Word  RR )
42, 3syl 17 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( F substr  <.
0 ,  ( N  -  1 ) >.
)  e. Word  RR )
5 1nn0 11308 . . . . . . . . . . 11  |-  1  e.  NN0
65a1i 11 . . . . . . . . . 10  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  1  e.  NN0 )
76nn0red 11352 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  1  e.  RR )
8 2re 11090 . . . . . . . . . . . 12  |-  2  e.  RR
98a1i 11 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  2  e.  RR )
10 signstfveq0.1 . . . . . . . . . . . . 13  |-  N  =  ( # `  F
)
11 lencl 13324 . . . . . . . . . . . . . 14  |-  ( F  e. Word  RR  ->  ( # `  F )  e.  NN0 )
122, 11syl 17 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( # `  F
)  e.  NN0 )
1310, 12syl5eqel 2705 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  N  e.  NN0 )
1413nn0red 11352 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  N  e.  RR )
15 1le2 11241 . . . . . . . . . . . 12  |-  1  <_  2
1615a1i 11 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  1  <_  2 )
17 signsv.p . . . . . . . . . . . . . 14  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
18 signsv.w . . . . . . . . . . . . . 14  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
19 signsv.t . . . . . . . . . . . . . 14  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
20 signsv.v . . . . . . . . . . . . . 14  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
2117, 18, 19, 20, 10signstfveq0a 30653 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  N  e.  ( ZZ>= `  2 )
)
22 eluz2 11693 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N ) )
2321, 22sylib 208 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N ) )
2423simp3d 1075 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  2  <_  N )
257, 9, 14, 16, 24letrd 10194 . . . . . . . . . 10  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  1  <_  N )
26 fznn0 12432 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( 1  e.  ( 0 ... N )  <->  ( 1  e.  NN0  /\  1  <_  N ) ) )
2713, 26syl 17 . . . . . . . . . 10  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( 1  e.  ( 0 ... N )  <->  ( 1  e.  NN0  /\  1  <_  N ) ) )
286, 25, 27mpbir2and 957 . . . . . . . . 9  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  1  e.  ( 0 ... N
) )
29 fznn0sub2 12446 . . . . . . . . 9  |-  ( 1  e.  ( 0 ... N )  ->  ( N  -  1 )  e.  ( 0 ... N ) )
3028, 29syl 17 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( N  -  1 )  e.  ( 0 ... N
) )
3110oveq2i 6661 . . . . . . . 8  |-  ( 0 ... N )  =  ( 0 ... ( # `
 F ) )
3230, 31syl6eleq 2711 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( N  -  1 )  e.  ( 0 ... ( # `
 F ) ) )
33 swrd0len 13422 . . . . . . 7  |-  ( ( F  e. Word  RR  /\  ( N  -  1
)  e.  ( 0 ... ( # `  F
) ) )  -> 
( # `  ( F substr  <. 0 ,  ( N  -  1 ) >.
) )  =  ( N  -  1 ) )
342, 32, 33syl2anc 693 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( # `  ( F substr  <. 0 ,  ( N  -  1 )
>. ) )  =  ( N  -  1 ) )
35 uz2m1nn 11763 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  e.  NN )
3621, 35syl 17 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( N  -  1 )  e.  NN )
3734, 36eqeltrd 2701 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( # `  ( F substr  <. 0 ,  ( N  -  1 )
>. ) )  e.  NN )
38 nnne0 11053 . . . . . 6  |-  ( (
# `  ( F substr  <.
0 ,  ( N  -  1 ) >.
) )  e.  NN  ->  ( # `  ( F substr  <. 0 ,  ( N  -  1 )
>. ) )  =/=  0
)
39 fveq2 6191 . . . . . . . 8  |-  ( ( F substr  <. 0 ,  ( N  -  1 )
>. )  =  (/)  ->  ( # `
 ( F substr  <. 0 ,  ( N  - 
1 ) >. )
)  =  ( # `  (/) ) )
40 hash0 13158 . . . . . . . 8  |-  ( # `  (/) )  =  0
4139, 40syl6eq 2672 . . . . . . 7  |-  ( ( F substr  <. 0 ,  ( N  -  1 )
>. )  =  (/)  ->  ( # `
 ( F substr  <. 0 ,  ( N  - 
1 ) >. )
)  =  0 )
4241necon3i 2826 . . . . . 6  |-  ( (
# `  ( F substr  <.
0 ,  ( N  -  1 ) >.
) )  =/=  0  ->  ( F substr  <. 0 ,  ( N  - 
1 ) >. )  =/=  (/) )
4338, 42syl 17 . . . . 5  |-  ( (
# `  ( F substr  <.
0 ,  ( N  -  1 ) >.
) )  e.  NN  ->  ( F substr  <. 0 ,  ( N  - 
1 ) >. )  =/=  (/) )
4437, 43syl 17 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( F substr  <.
0 ,  ( N  -  1 ) >.
)  =/=  (/) )
45 eldifsn 4317 . . . 4  |-  ( ( F substr  <. 0 ,  ( N  -  1 )
>. )  e.  (Word  RR  \  { (/) } )  <-> 
( ( F substr  <. 0 ,  ( N  - 
1 ) >. )  e. Word  RR  /\  ( F substr  <. 0 ,  ( N  -  1 ) >.
)  =/=  (/) ) )
464, 44, 45sylanbrc 698 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( F substr  <.
0 ,  ( N  -  1 ) >.
)  e.  (Word  RR  \  { (/) } ) )
47 simpr 477 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( F `  ( N  -  1 ) )  =  0 )
48 0re 10040 . . . 4  |-  0  e.  RR
4947, 48syl6eqel 2709 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( F `  ( N  -  1 ) )  e.  RR )
5017, 18, 19, 20signstfvn 30646 . . 3  |-  ( ( ( F substr  <. 0 ,  ( N  - 
1 ) >. )  e.  (Word  RR  \  { (/)
} )  /\  ( F `  ( N  -  1 ) )  e.  RR )  -> 
( ( T `  ( ( F substr  <. 0 ,  ( N  - 
1 ) >. ) ++  <" ( F `  ( N  -  1
) ) "> ) ) `  ( # `
 ( F substr  <. 0 ,  ( N  - 
1 ) >. )
) )  =  ( ( ( T `  ( F substr  <. 0 ,  ( N  -  1 ) >. ) ) `  ( ( # `  ( F substr  <. 0 ,  ( N  -  1 )
>. ) )  -  1 ) )  .+^  (sgn `  ( F `  ( N  -  1 ) ) ) ) )
5146, 49, 50syl2anc 693 . 2  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( T `  ( ( F substr  <. 0 ,  ( N  -  1 )
>. ) ++  <" ( F `  ( N  -  1 ) ) "> ) ) `
 ( # `  ( F substr  <. 0 ,  ( N  -  1 )
>. ) ) )  =  ( ( ( T `
 ( F substr  <. 0 ,  ( N  - 
1 ) >. )
) `  ( ( # `
 ( F substr  <. 0 ,  ( N  - 
1 ) >. )
)  -  1 ) )  .+^  (sgn `  ( F `  ( N  -  1 ) ) ) ) )
5210oveq1i 6660 . . . . . . . . 9  |-  ( N  -  1 )  =  ( ( # `  F
)  -  1 )
5352opeq2i 4406 . . . . . . . 8  |-  <. 0 ,  ( N  - 
1 ) >.  =  <. 0 ,  ( ( # `
 F )  - 
1 ) >.
5453oveq2i 6661 . . . . . . 7  |-  ( F substr  <. 0 ,  ( N  -  1 ) >.
)  =  ( F substr  <. 0 ,  ( (
# `  F )  -  1 ) >.
)
5554a1i 11 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( F substr  <.
0 ,  ( N  -  1 ) >.
)  =  ( F substr  <. 0 ,  ( (
# `  F )  -  1 ) >.
) )
56 lsw 13351 . . . . . . . . . 10  |-  ( F  e.  (Word  RR  \  { (/) } )  -> 
( lastS  `  F )  =  ( F `  (
( # `  F )  -  1 ) ) )
5756ad2antrr 762 . . . . . . . . 9  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( lastS  `  F
)  =  ( F `
 ( ( # `  F )  -  1 ) ) )
5810eqcomi 2631 . . . . . . . . . . 11  |-  ( # `  F )  =  N
5958oveq1i 6660 . . . . . . . . . 10  |-  ( (
# `  F )  -  1 )  =  ( N  -  1 )
6059fveq2i 6194 . . . . . . . . 9  |-  ( F `
 ( ( # `  F )  -  1 ) )  =  ( F `  ( N  -  1 ) )
6157, 60syl6eq 2672 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( lastS  `  F
)  =  ( F `
 ( N  - 
1 ) ) )
6261s1eqd 13381 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  <" ( lastS  `  F ) ">  =  <" ( F `
 ( N  - 
1 ) ) "> )
6362eqcomd 2628 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  <" ( F `  ( N  -  1 ) ) ">  =  <" ( lastS  `  F ) "> )
6455, 63oveq12d 6668 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( F substr  <. 0 ,  ( N  -  1 )
>. ) ++  <" ( F `  ( N  -  1 ) ) "> )  =  ( ( F substr  <. 0 ,  ( ( # `  F )  -  1 ) >. ) ++  <" ( lastS  `  F ) "> ) )
65 eldifsn 4317 . . . . . . 7  |-  ( F  e.  (Word  RR  \  { (/) } )  <->  ( F  e. Word  RR  /\  F  =/=  (/) ) )
661, 65sylib 208 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( F  e. Word  RR  /\  F  =/=  (/) ) )
67 swrdccatwrd 13468 . . . . . 6  |-  ( ( F  e. Word  RR  /\  F  =/=  (/) )  ->  (
( F substr  <. 0 ,  ( ( # `  F
)  -  1 )
>. ) ++  <" ( lastS  `  F ) "> )  =  F )
6866, 67syl 17 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( F substr  <. 0 ,  ( ( # `  F
)  -  1 )
>. ) ++  <" ( lastS  `  F ) "> )  =  F )
6964, 68eqtrd 2656 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( F substr  <. 0 ,  ( N  -  1 )
>. ) ++  <" ( F `  ( N  -  1 ) ) "> )  =  F )
7069fveq2d 6195 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( T `  ( ( F substr  <. 0 ,  ( N  - 
1 ) >. ) ++  <" ( F `  ( N  -  1
) ) "> ) )  =  ( T `  F ) )
7170, 34fveq12d 6197 . 2  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( T `  ( ( F substr  <. 0 ,  ( N  -  1 )
>. ) ++  <" ( F `  ( N  -  1 ) ) "> ) ) `
 ( # `  ( F substr  <. 0 ,  ( N  -  1 )
>. ) ) )  =  ( ( T `  F ) `  ( N  -  1 ) ) )
7213nn0cnd 11353 . . . . . . . . . 10  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  N  e.  CC )
73 1cnd 10056 . . . . . . . . . 10  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  1  e.  CC )
7472, 73, 73subsub4d 10423 . . . . . . . . 9  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( N  -  1 )  -  1 )  =  ( N  -  (
1  +  1 ) ) )
75 1p1e2 11134 . . . . . . . . . 10  |-  ( 1  +  1 )  =  2
7675oveq2i 6661 . . . . . . . . 9  |-  ( N  -  ( 1  +  1 ) )  =  ( N  -  2 )
7774, 76syl6eq 2672 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( N  -  1 )  -  1 )  =  ( N  -  2 ) )
78 fzo0end 12560 . . . . . . . . 9  |-  ( ( N  -  1 )  e.  NN  ->  (
( N  -  1 )  -  1 )  e.  ( 0..^ ( N  -  1 ) ) )
7936, 78syl 17 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( N  -  1 )  -  1 )  e.  ( 0..^ ( N  -  1 ) ) )
8077, 79eqeltrrd 2702 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( N  -  2 )  e.  ( 0..^ ( N  -  1 ) ) )
8134oveq2d 6666 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( 0..^ ( # `  ( F substr  <. 0 ,  ( N  -  1 )
>. ) ) )  =  ( 0..^ ( N  -  1 ) ) )
8280, 81eleqtrrd 2704 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( N  -  2 )  e.  ( 0..^ ( # `  ( F substr  <. 0 ,  ( N  - 
1 ) >. )
) ) )
8317, 18, 19, 20signstfvp 30648 . . . . . 6  |-  ( ( ( F substr  <. 0 ,  ( N  - 
1 ) >. )  e. Word  RR  /\  ( F `
 ( N  - 
1 ) )  e.  RR  /\  ( N  -  2 )  e.  ( 0..^ ( # `  ( F substr  <. 0 ,  ( N  - 
1 ) >. )
) ) )  -> 
( ( T `  ( ( F substr  <. 0 ,  ( N  - 
1 ) >. ) ++  <" ( F `  ( N  -  1
) ) "> ) ) `  ( N  -  2 ) )  =  ( ( T `  ( F substr  <. 0 ,  ( N  -  1 ) >.
) ) `  ( N  -  2 ) ) )
844, 49, 82, 83syl3anc 1326 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( T `  ( ( F substr  <. 0 ,  ( N  -  1 )
>. ) ++  <" ( F `  ( N  -  1 ) ) "> ) ) `
 ( N  - 
2 ) )  =  ( ( T `  ( F substr  <. 0 ,  ( N  -  1 ) >. ) ) `  ( N  -  2
) ) )
8569eqcomd 2628 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  F  =  ( ( F substr  <. 0 ,  ( N  - 
1 ) >. ) ++  <" ( F `  ( N  -  1
) ) "> ) )
8685fveq2d 6195 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( T `  F )  =  ( T `  ( ( F substr  <. 0 ,  ( N  -  1 )
>. ) ++  <" ( F `  ( N  -  1 ) ) "> ) ) )
8786fveq1d 6193 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( T `  F ) `  ( N  -  2 ) )  =  ( ( T `  (
( F substr  <. 0 ,  ( N  -  1 ) >. ) ++  <" ( F `  ( N  -  1 ) ) "> ) ) `
 ( N  - 
2 ) ) )
8834oveq1d 6665 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( # `
 ( F substr  <. 0 ,  ( N  - 
1 ) >. )
)  -  1 )  =  ( ( N  -  1 )  - 
1 ) )
8988, 74eqtrd 2656 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( # `
 ( F substr  <. 0 ,  ( N  - 
1 ) >. )
)  -  1 )  =  ( N  -  ( 1  +  1 ) ) )
9089, 76syl6eq 2672 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( # `
 ( F substr  <. 0 ,  ( N  - 
1 ) >. )
)  -  1 )  =  ( N  - 
2 ) )
9190fveq2d 6195 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( T `  ( F substr  <.
0 ,  ( N  -  1 ) >.
) ) `  (
( # `  ( F substr  <. 0 ,  ( N  -  1 ) >.
) )  -  1 ) )  =  ( ( T `  ( F substr  <. 0 ,  ( N  -  1 )
>. ) ) `  ( N  -  2 ) ) )
9284, 87, 913eqtr4rd 2667 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( T `  ( F substr  <.
0 ,  ( N  -  1 ) >.
) ) `  (
( # `  ( F substr  <. 0 ,  ( N  -  1 ) >.
) )  -  1 ) )  =  ( ( T `  F
) `  ( N  -  2 ) ) )
93 fveq2 6191 . . . . . 6  |-  ( ( F `  ( N  -  1 ) )  =  0  ->  (sgn `  ( F `  ( N  -  1 ) ) )  =  (sgn
`  0 ) )
94 sgn0 13829 . . . . . 6  |-  (sgn ` 
0 )  =  0
9593, 94syl6eq 2672 . . . . 5  |-  ( ( F `  ( N  -  1 ) )  =  0  ->  (sgn `  ( F `  ( N  -  1 ) ) )  =  0 )
9695adantl 482 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  (sgn `  ( F `  ( N  -  1 ) ) )  =  0 )
9792, 96oveq12d 6668 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( (
( T `  ( F substr  <. 0 ,  ( N  -  1 )
>. ) ) `  (
( # `  ( F substr  <. 0 ,  ( N  -  1 ) >.
) )  -  1 ) )  .+^  (sgn `  ( F `  ( N  -  1 ) ) ) )  =  ( ( ( T `  F ) `  ( N  -  2 ) )  .+^  0 ) )
98 uznn0sub 11719 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  2 )  e. 
NN0 )
9921, 98syl 17 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( N  -  2 )  e. 
NN0 )
100 eluz2nn 11726 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
10121, 100syl 17 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  N  e.  NN )
102 2rp 11837 . . . . . . . . 9  |-  2  e.  RR+
103102a1i 11 . . . . . . . 8  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  2  e.  RR+ )
10414, 103ltsubrpd 11904 . . . . . . 7  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( N  -  2 )  < 
N )
105 elfzo0 12508 . . . . . . 7  |-  ( ( N  -  2 )  e.  ( 0..^ N )  <->  ( ( N  -  2 )  e. 
NN0  /\  N  e.  NN  /\  ( N  - 
2 )  <  N
) )
10699, 101, 104, 105syl3anbrc 1246 . . . . . 6  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( N  -  2 )  e.  ( 0..^ N ) )
10710oveq2i 6661 . . . . . 6  |-  ( 0..^ N )  =  ( 0..^ ( # `  F
) )
108106, 107syl6eleq 2711 . . . . 5  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( N  -  2 )  e.  ( 0..^ ( # `  F ) ) )
10917, 18, 19, 20signstcl 30642 . . . . 5  |-  ( ( F  e. Word  RR  /\  ( N  -  2
)  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( T `  F ) `  ( N  -  2 ) )  e.  { -u
1 ,  0 ,  1 } )
1102, 108, 109syl2anc 693 . . . 4  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( T `  F ) `  ( N  -  2 ) )  e.  { -u 1 ,  0 ,  1 } )
11117, 18signswrid 30635 . . . 4  |-  ( ( ( T `  F
) `  ( N  -  2 ) )  e.  { -u 1 ,  0 ,  1 }  ->  ( (
( T `  F
) `  ( N  -  2 ) ) 
.+^  0 )  =  ( ( T `  F ) `  ( N  -  2 ) ) )
112110, 111syl 17 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( (
( T `  F
) `  ( N  -  2 ) ) 
.+^  0 )  =  ( ( T `  F ) `  ( N  -  2 ) ) )
11397, 112eqtrd 2656 . 2  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( (
( T `  ( F substr  <. 0 ,  ( N  -  1 )
>. ) ) `  (
( # `  ( F substr  <. 0 ,  ( N  -  1 ) >.
) )  -  1 ) )  .+^  (sgn `  ( F `  ( N  -  1 ) ) ) )  =  ( ( T `  F
) `  ( N  -  2 ) ) )
11451, 71, 1133eqtr3d 2664 1  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( T `  F ) `  ( N  -  1 ) )  =  ( ( T `  F
) `  ( N  -  2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   (/)c0 3915   ifcif 4086   {csn 4177   {cpr 4179   {ctp 4181   <.cop 4183   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293   <"cs1 13294   substr csubstr 13295  sgncsgn 13826   sum_csu 14416   ndxcnx 15854   Basecbs 15857   +g cplusg 15941    gsumg cgsu 16101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-sgn 13827  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator