Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstotbnd Structured version   Visualization version   Unicode version

Theorem sstotbnd 33574
Description: Condition for a subset of a metric space to be totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Hypothesis
Ref Expression
sstotbnd.2  |-  N  =  ( M  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
sstotbnd  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e. 
Fin  ( Y  C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
Distinct variable groups:    b, d,
v, x, M    X, b, d, v, x    N, d, v, x    Y, b, d, v, x
Allowed substitution hint:    N( b)

Proof of Theorem sstotbnd
Dummy variables  f  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstotbnd.2 . . 3  |-  N  =  ( M  |`  ( Y  X.  Y ) )
21sstotbnd2 33573 . 2  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. u  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  u  ( x
( ball `  M )
d ) ) )
3 elfpw 8268 . . . . . . . . 9  |-  ( u  e.  ( ~P X  i^i  Fin )  <->  ( u  C_  X  /\  u  e. 
Fin ) )
43simprbi 480 . . . . . . . 8  |-  ( u  e.  ( ~P X  i^i  Fin )  ->  u  e.  Fin )
5 mptfi 8265 . . . . . . . 8  |-  ( u  e.  Fin  ->  (
x  e.  u  |->  ( x ( ball `  M
) d ) )  e.  Fin )
6 rnfi 8249 . . . . . . . 8  |-  ( ( x  e.  u  |->  ( x ( ball `  M
) d ) )  e.  Fin  ->  ran  ( x  e.  u  |->  ( x ( ball `  M ) d ) )  e.  Fin )
74, 5, 63syl 18 . . . . . . 7  |-  ( u  e.  ( ~P X  i^i  Fin )  ->  ran  ( x  e.  u  |->  ( x ( ball `  M ) d ) )  e.  Fin )
87ad2antrl 764 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  ( u  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  u  ( x ( ball `  M
) d ) ) )  ->  ran  ( x  e.  u  |->  ( x ( ball `  M
) d ) )  e.  Fin )
9 simprr 796 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  ( u  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  u  ( x ( ball `  M
) d ) ) )  ->  Y  C_  U_ x  e.  u  ( x
( ball `  M )
d ) )
10 eqid 2622 . . . . . . . 8  |-  ( x  e.  u  |->  ( x ( ball `  M
) d ) )  =  ( x  e.  u  |->  ( x (
ball `  M )
d ) )
1110rnmpt 5371 . . . . . . 7  |-  ran  (
x  e.  u  |->  ( x ( ball `  M
) d ) )  =  { b  |  E. x  e.  u  b  =  ( x
( ball `  M )
d ) }
123simplbi 476 . . . . . . . . . 10  |-  ( u  e.  ( ~P X  i^i  Fin )  ->  u  C_  X )
13 ssrexv 3667 . . . . . . . . . 10  |-  ( u 
C_  X  ->  ( E. x  e.  u  b  =  ( x
( ball `  M )
d )  ->  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) )
1412, 13syl 17 . . . . . . . . 9  |-  ( u  e.  ( ~P X  i^i  Fin )  ->  ( E. x  e.  u  b  =  ( x
( ball `  M )
d )  ->  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) )
1514ad2antrl 764 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  ( u  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  u  ( x ( ball `  M
) d ) ) )  ->  ( E. x  e.  u  b  =  ( x (
ball `  M )
d )  ->  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) )
1615ss2abdv 3675 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  ( u  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  u  ( x ( ball `  M
) d ) ) )  ->  { b  |  E. x  e.  u  b  =  ( x
( ball `  M )
d ) }  C_  { b  |  E. x  e.  X  b  =  ( x ( ball `  M ) d ) } )
1711, 16syl5eqss 3649 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  ( u  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  u  ( x ( ball `  M
) d ) ) )  ->  ran  ( x  e.  u  |->  ( x ( ball `  M
) d ) ) 
C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) } )
18 unieq 4444 . . . . . . . . . 10  |-  ( v  =  ran  ( x  e.  u  |->  ( x ( ball `  M
) d ) )  ->  U. v  =  U. ran  ( x  e.  u  |->  ( x ( ball `  M ) d ) ) )
19 ovex 6678 . . . . . . . . . . 11  |-  ( x ( ball `  M
) d )  e. 
_V
2019dfiun3 5380 . . . . . . . . . 10  |-  U_ x  e.  u  ( x
( ball `  M )
d )  =  U. ran  ( x  e.  u  |->  ( x ( ball `  M ) d ) )
2118, 20syl6eqr 2674 . . . . . . . . 9  |-  ( v  =  ran  ( x  e.  u  |->  ( x ( ball `  M
) d ) )  ->  U. v  =  U_ x  e.  u  (
x ( ball `  M
) d ) )
2221sseq2d 3633 . . . . . . . 8  |-  ( v  =  ran  ( x  e.  u  |->  ( x ( ball `  M
) d ) )  ->  ( Y  C_  U. v  <->  Y  C_  U_ x  e.  u  ( x
( ball `  M )
d ) ) )
23 ssabral 3673 . . . . . . . . 9  |-  ( v 
C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) }  <->  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) )
24 sseq1 3626 . . . . . . . . 9  |-  ( v  =  ran  ( x  e.  u  |->  ( x ( ball `  M
) d ) )  ->  ( v  C_  { b  |  E. x  e.  X  b  =  ( x ( ball `  M ) d ) }  <->  ran  ( x  e.  u  |->  ( x (
ball `  M )
d ) )  C_  { b  |  E. x  e.  X  b  =  ( x ( ball `  M ) d ) } ) )
2523, 24syl5bbr 274 . . . . . . . 8  |-  ( v  =  ran  ( x  e.  u  |->  ( x ( ball `  M
) d ) )  ->  ( A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d )  <->  ran  ( x  e.  u  |->  ( x ( ball `  M ) d ) )  C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) } ) )
2622, 25anbi12d 747 . . . . . . 7  |-  ( v  =  ran  ( x  e.  u  |->  ( x ( ball `  M
) d ) )  ->  ( ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) )  <->  ( Y  C_ 
U_ x  e.  u  ( x ( ball `  M ) d )  /\  ran  ( x  e.  u  |->  ( x ( ball `  M
) d ) ) 
C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) } ) ) )
2726rspcev 3309 . . . . . 6  |-  ( ( ran  ( x  e.  u  |->  ( x (
ball `  M )
d ) )  e. 
Fin  /\  ( Y  C_ 
U_ x  e.  u  ( x ( ball `  M ) d )  /\  ran  ( x  e.  u  |->  ( x ( ball `  M
) d ) ) 
C_  { b  |  E. x  e.  X  b  =  ( x
( ball `  M )
d ) } ) )  ->  E. v  e.  Fin  ( Y  C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) )
288, 9, 17, 27syl12anc 1324 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  ( u  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  u  ( x ( ball `  M
) d ) ) )  ->  E. v  e.  Fin  ( Y  C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) )
2928rexlimdvaa 3032 . . . 4  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( E. u  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  u  ( x (
ball `  M )
d )  ->  E. v  e.  Fin  ( Y  C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
30 oveq1 6657 . . . . . . . . . 10  |-  ( x  =  ( f `  b )  ->  (
x ( ball `  M
) d )  =  ( ( f `  b ) ( ball `  M ) d ) )
3130eqeq2d 2632 . . . . . . . . 9  |-  ( x  =  ( f `  b )  ->  (
b  =  ( x ( ball `  M
) d )  <->  b  =  ( ( f `  b ) ( ball `  M ) d ) ) )
3231ac6sfi 8204 . . . . . . . 8  |-  ( ( v  e.  Fin  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) )  ->  E. f ( f : v --> X  /\  A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )
3332adantrl 752 . . . . . . 7  |-  ( ( v  e.  Fin  /\  ( Y  C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x
( ball `  M )
d ) ) )  ->  E. f ( f : v --> X  /\  A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )
3433adantl 482 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  ( v  e.  Fin  /\  ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )  ->  E. f
( f : v --> X  /\  A. b  e.  v  b  =  ( ( f `  b ) ( ball `  M ) d ) ) )
35 frn 6053 . . . . . . . . 9  |-  ( f : v --> X  ->  ran  f  C_  X )
3635ad2antrl 764 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  ( v  e.  Fin  /\  ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )  /\  ( f : v --> X  /\  A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )  ->  ran  f  C_  X )
37 simplrl 800 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  ( v  e.  Fin  /\  ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )  /\  ( f : v --> X  /\  A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )  ->  v  e.  Fin )
38 ffn 6045 . . . . . . . . . . 11  |-  ( f : v --> X  -> 
f  Fn  v )
3938ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  ( v  e.  Fin  /\  ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )  /\  ( f : v --> X  /\  A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )  ->  f  Fn  v
)
40 dffn4 6121 . . . . . . . . . 10  |-  ( f  Fn  v  <->  f :
v -onto-> ran  f )
4139, 40sylib 208 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  ( v  e.  Fin  /\  ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )  /\  ( f : v --> X  /\  A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )  ->  f : v
-onto->
ran  f )
42 fofi 8252 . . . . . . . . 9  |-  ( ( v  e.  Fin  /\  f : v -onto-> ran  f
)  ->  ran  f  e. 
Fin )
4337, 41, 42syl2anc 693 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  ( v  e.  Fin  /\  ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )  /\  ( f : v --> X  /\  A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )  ->  ran  f  e.  Fin )
44 elfpw 8268 . . . . . . . 8  |-  ( ran  f  e.  ( ~P X  i^i  Fin )  <->  ( ran  f  C_  X  /\  ran  f  e.  Fin ) )
4536, 43, 44sylanbrc 698 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  ( v  e.  Fin  /\  ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )  /\  ( f : v --> X  /\  A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )  ->  ran  f  e.  ( ~P X  i^i  Fin ) )
46 simprrl 804 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  ( v  e.  Fin  /\  ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )  ->  Y  C_  U. v
)
4746adantr 481 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  ( v  e.  Fin  /\  ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )  /\  ( f : v --> X  /\  A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )  ->  Y  C_  U. v
)
48 uniiun 4573 . . . . . . . . . . 11  |-  U. v  =  U_ b  e.  v  b
49 iuneq2 4537 . . . . . . . . . . 11  |-  ( A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d )  ->  U_ b  e.  v  b  =  U_ b  e.  v  ( ( f `  b
) ( ball `  M
) d ) )
5048, 49syl5eq 2668 . . . . . . . . . 10  |-  ( A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d )  ->  U. v  =  U_ b  e.  v  ( ( f `  b ) ( ball `  M ) d ) )
5150ad2antll 765 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  ( v  e.  Fin  /\  ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )  /\  ( f : v --> X  /\  A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )  ->  U. v  =  U_ b  e.  v  (
( f `  b
) ( ball `  M
) d ) )
5247, 51sseqtrd 3641 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  ( v  e.  Fin  /\  ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )  /\  ( f : v --> X  /\  A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )  ->  Y  C_  U_ b  e.  v  ( (
f `  b )
( ball `  M )
d ) )
5330eleq2d 2687 . . . . . . . . . . . 12  |-  ( x  =  ( f `  b )  ->  (
y  e.  ( x ( ball `  M
) d )  <->  y  e.  ( ( f `  b ) ( ball `  M ) d ) ) )
5453rexrn 6361 . . . . . . . . . . 11  |-  ( f  Fn  v  ->  ( E. x  e.  ran  f  y  e.  (
x ( ball `  M
) d )  <->  E. b  e.  v  y  e.  ( ( f `  b ) ( ball `  M ) d ) ) )
55 eliun 4524 . . . . . . . . . . 11  |-  ( y  e.  U_ x  e. 
ran  f ( x ( ball `  M
) d )  <->  E. x  e.  ran  f  y  e.  ( x ( ball `  M ) d ) )
56 eliun 4524 . . . . . . . . . . 11  |-  ( y  e.  U_ b  e.  v  ( ( f `
 b ) (
ball `  M )
d )  <->  E. b  e.  v  y  e.  ( ( f `  b ) ( ball `  M ) d ) )
5754, 55, 563bitr4g 303 . . . . . . . . . 10  |-  ( f  Fn  v  ->  (
y  e.  U_ x  e.  ran  f ( x ( ball `  M
) d )  <->  y  e.  U_ b  e.  v  ( ( f `  b
) ( ball `  M
) d ) ) )
5857eqrdv 2620 . . . . . . . . 9  |-  ( f  Fn  v  ->  U_ x  e.  ran  f ( x ( ball `  M
) d )  = 
U_ b  e.  v  ( ( f `  b ) ( ball `  M ) d ) )
5939, 58syl 17 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  ( v  e.  Fin  /\  ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )  /\  ( f : v --> X  /\  A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )  ->  U_ x  e.  ran  f ( x (
ball `  M )
d )  =  U_ b  e.  v  (
( f `  b
) ( ball `  M
) d ) )
6052, 59sseqtr4d 3642 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  ( v  e.  Fin  /\  ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )  /\  ( f : v --> X  /\  A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )  ->  Y  C_  U_ x  e.  ran  f ( x ( ball `  M
) d ) )
61 iuneq1 4534 . . . . . . . . 9  |-  ( u  =  ran  f  ->  U_ x  e.  u  ( x ( ball `  M ) d )  =  U_ x  e. 
ran  f ( x ( ball `  M
) d ) )
6261sseq2d 3633 . . . . . . . 8  |-  ( u  =  ran  f  -> 
( Y  C_  U_ x  e.  u  ( x
( ball `  M )
d )  <->  Y  C_  U_ x  e.  ran  f ( x ( ball `  M
) d ) ) )
6362rspcev 3309 . . . . . . 7  |-  ( ( ran  f  e.  ( ~P X  i^i  Fin )  /\  Y  C_  U_ x  e.  ran  f ( x ( ball `  M
) d ) )  ->  E. u  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  u  ( x
( ball `  M )
d ) )
6445, 60, 63syl2anc 693 . . . . . 6  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  Y  C_  X
)  /\  ( v  e.  Fin  /\  ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )  /\  ( f : v --> X  /\  A. b  e.  v  b  =  ( ( f `
 b ) (
ball `  M )
d ) ) )  ->  E. u  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  u  ( x
( ball `  M )
d ) )
6534, 64exlimddv 1863 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  Y  C_  X
)  /\  ( v  e.  Fin  /\  ( Y 
C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )  ->  E. u  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  u  ( x
( ball `  M )
d ) )
6665rexlimdvaa 3032 . . . 4  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( E. v  e.  Fin  ( Y  C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x
( ball `  M )
d ) )  ->  E. u  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  u  ( x (
ball `  M )
d ) ) )
6729, 66impbid 202 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( E. u  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  u  ( x (
ball `  M )
d )  <->  E. v  e.  Fin  ( Y  C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
6867ralbidv 2986 . 2  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( A. d  e.  RR+  E. u  e.  ( ~P X  i^i  Fin ) Y  C_  U_ x  e.  u  ( x
( ball `  M )
d )  <->  A. d  e.  RR+  E. v  e. 
Fin  ( Y  C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
692, 68bitrd 268 1  |-  ( ( M  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( N  e.  ( TotBnd `  Y )  <->  A. d  e.  RR+  E. v  e. 
Fin  ( Y  C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   U_ciun 4520    |-> cmpt 4729    X. cxp 5112   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RR+crp 11832   Metcme 19732   ballcbl 19733   TotBndctotbnd 33565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-totbnd 33567
This theorem is referenced by:  totbndss  33576
  Copyright terms: Public domain W3C validator