Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submarchi Structured version   Visualization version   Unicode version

Theorem submarchi 29740
Description: A submonoid is archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.)
Assertion
Ref Expression
submarchi  |-  ( ( ( W  e. Toset  /\  W  e. Archi )  /\  A  e.  (SubMnd `  W )
)  ->  ( Ws  A
)  e. Archi )

Proof of Theorem submarchi
Dummy variables  x  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 17346 . . . . . 6  |-  ( A  e.  (SubMnd `  W
)  ->  W  e.  Mnd )
2 eqid 2622 . . . . . . 7  |-  ( Base `  W )  =  (
Base `  W )
3 eqid 2622 . . . . . . 7  |-  ( 0g
`  W )  =  ( 0g `  W
)
4 eqid 2622 . . . . . . 7  |-  (.g `  W
)  =  (.g `  W
)
5 eqid 2622 . . . . . . 7  |-  ( le
`  W )  =  ( le `  W
)
6 eqid 2622 . . . . . . 7  |-  ( lt
`  W )  =  ( lt `  W
)
72, 3, 4, 5, 6isarchi2 29739 . . . . . 6  |-  ( ( W  e. Toset  /\  W  e. 
Mnd )  ->  ( W  e. Archi  <->  A. x  e.  (
Base `  W ) A. y  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) x  ->  E. n  e.  NN  y ( le `  W ) ( n (.g `  W ) x ) ) ) )
81, 7sylan2 491 . . . . 5  |-  ( ( W  e. Toset  /\  A  e.  (SubMnd `  W )
)  ->  ( W  e. Archi  <->  A. x  e.  ( Base `  W ) A. y  e.  ( Base `  W ) ( ( 0g `  W ) ( lt `  W
) x  ->  E. n  e.  NN  y ( le
`  W ) ( n (.g `  W ) x ) ) ) )
98biimpa 501 . . . 4  |-  ( ( ( W  e. Toset  /\  A  e.  (SubMnd `  W )
)  /\  W  e. Archi )  ->  A. x  e.  (
Base `  W ) A. y  e.  ( Base `  W ) ( ( 0g `  W
) ( lt `  W ) x  ->  E. n  e.  NN  y ( le `  W ) ( n (.g `  W ) x ) ) )
109an32s 846 . . 3  |-  ( ( ( W  e. Toset  /\  W  e. Archi )  /\  A  e.  (SubMnd `  W )
)  ->  A. x  e.  ( Base `  W
) A. y  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  E. n  e.  NN  y ( le
`  W ) ( n (.g `  W ) x ) ) )
11 eqid 2622 . . . . . . . 8  |-  ( Ws  A )  =  ( Ws  A )
1211submbas 17355 . . . . . . 7  |-  ( A  e.  (SubMnd `  W
)  ->  A  =  ( Base `  ( Ws  A
) ) )
132submss 17350 . . . . . . 7  |-  ( A  e.  (SubMnd `  W
)  ->  A  C_  ( Base `  W ) )
1412, 13eqsstr3d 3640 . . . . . 6  |-  ( A  e.  (SubMnd `  W
)  ->  ( Base `  ( Ws  A ) )  C_  ( Base `  W )
)
15 ssralv 3666 . . . . . . . 8  |-  ( (
Base `  ( Ws  A
) )  C_  ( Base `  W )  -> 
( A. y  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  E. n  e.  NN  y ( le
`  W ) ( n (.g `  W ) x ) )  ->  A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  W
) ( lt `  W ) x  ->  E. n  e.  NN  y ( le `  W ) ( n (.g `  W ) x ) ) ) )
1615ralimdv 2963 . . . . . . 7  |-  ( (
Base `  ( Ws  A
) )  C_  ( Base `  W )  -> 
( A. x  e.  ( Base `  W
) A. y  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  E. n  e.  NN  y ( le
`  W ) ( n (.g `  W ) x ) )  ->  A. x  e.  ( Base `  W
) A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  W
) ( lt `  W ) x  ->  E. n  e.  NN  y ( le `  W ) ( n (.g `  W ) x ) ) ) )
17 ssralv 3666 . . . . . . 7  |-  ( (
Base `  ( Ws  A
) )  C_  ( Base `  W )  -> 
( A. x  e.  ( Base `  W
) A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  W
) ( lt `  W ) x  ->  E. n  e.  NN  y ( le `  W ) ( n (.g `  W ) x ) )  ->  A. x  e.  ( Base `  ( Ws  A ) ) A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  W
) ( lt `  W ) x  ->  E. n  e.  NN  y ( le `  W ) ( n (.g `  W ) x ) ) ) )
1816, 17syld 47 . . . . . 6  |-  ( (
Base `  ( Ws  A
) )  C_  ( Base `  W )  -> 
( A. x  e.  ( Base `  W
) A. y  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  E. n  e.  NN  y ( le
`  W ) ( n (.g `  W ) x ) )  ->  A. x  e.  ( Base `  ( Ws  A ) ) A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  W
) ( lt `  W ) x  ->  E. n  e.  NN  y ( le `  W ) ( n (.g `  W ) x ) ) ) )
1914, 18syl 17 . . . . 5  |-  ( A  e.  (SubMnd `  W
)  ->  ( A. x  e.  ( Base `  W ) A. y  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  E. n  e.  NN  y ( le
`  W ) ( n (.g `  W ) x ) )  ->  A. x  e.  ( Base `  ( Ws  A ) ) A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  W
) ( lt `  W ) x  ->  E. n  e.  NN  y ( le `  W ) ( n (.g `  W ) x ) ) ) )
2019adantl 482 . . . 4  |-  ( ( ( W  e. Toset  /\  W  e. Archi )  /\  A  e.  (SubMnd `  W )
)  ->  ( A. x  e.  ( Base `  W ) A. y  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  E. n  e.  NN  y ( le
`  W ) ( n (.g `  W ) x ) )  ->  A. x  e.  ( Base `  ( Ws  A ) ) A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  W
) ( lt `  W ) x  ->  E. n  e.  NN  y ( le `  W ) ( n (.g `  W ) x ) ) ) )
2111, 3subm0 17356 . . . . . . . . . 10  |-  ( A  e.  (SubMnd `  W
)  ->  ( 0g `  W )  =  ( 0g `  ( Ws  A ) ) )
2221ad2antrr 762 . . . . . . . . 9  |-  ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  (
Base `  ( Ws  A
) ) )  -> 
( 0g `  W
)  =  ( 0g
`  ( Ws  A ) ) )
2311, 5ressle 16059 . . . . . . . . . . . 12  |-  ( A  e.  (SubMnd `  W
)  ->  ( le `  W )  =  ( le `  ( Ws  A ) ) )
2423difeq1d 3727 . . . . . . . . . . 11  |-  ( A  e.  (SubMnd `  W
)  ->  ( ( le `  W )  \  _I  )  =  (
( le `  ( Ws  A ) )  \  _I  ) )
255, 6pltfval 16959 . . . . . . . . . . . 12  |-  ( W  e.  Mnd  ->  ( lt `  W )  =  ( ( le `  W )  \  _I  ) )
261, 25syl 17 . . . . . . . . . . 11  |-  ( A  e.  (SubMnd `  W
)  ->  ( lt `  W )  =  ( ( le `  W
)  \  _I  )
)
2711submmnd 17354 . . . . . . . . . . . 12  |-  ( A  e.  (SubMnd `  W
)  ->  ( Ws  A
)  e.  Mnd )
28 eqid 2622 . . . . . . . . . . . . 13  |-  ( le
`  ( Ws  A ) )  =  ( le
`  ( Ws  A ) )
29 eqid 2622 . . . . . . . . . . . . 13  |-  ( lt
`  ( Ws  A ) )  =  ( lt
`  ( Ws  A ) )
3028, 29pltfval 16959 . . . . . . . . . . . 12  |-  ( ( Ws  A )  e.  Mnd  ->  ( lt `  ( Ws  A ) )  =  ( ( le `  ( Ws  A ) )  \  _I  ) )
3127, 30syl 17 . . . . . . . . . . 11  |-  ( A  e.  (SubMnd `  W
)  ->  ( lt `  ( Ws  A ) )  =  ( ( le `  ( Ws  A ) )  \  _I  ) )
3224, 26, 313eqtr4d 2666 . . . . . . . . . 10  |-  ( A  e.  (SubMnd `  W
)  ->  ( lt `  W )  =  ( lt `  ( Ws  A ) ) )
3332ad2antrr 762 . . . . . . . . 9  |-  ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  (
Base `  ( Ws  A
) ) )  -> 
( lt `  W
)  =  ( lt
`  ( Ws  A ) ) )
34 eqidd 2623 . . . . . . . . 9  |-  ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  (
Base `  ( Ws  A
) ) )  ->  x  =  x )
3522, 33, 34breq123d 4667 . . . . . . . 8  |-  ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  (
Base `  ( Ws  A
) ) )  -> 
( ( 0g `  W ) ( lt
`  W ) x  <-> 
( 0g `  ( Ws  A ) ) ( lt `  ( Ws  A ) ) x ) )
36 eqidd 2623 . . . . . . . . . 10  |-  ( ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  ( Base `  ( Ws  A ) ) )  /\  n  e.  NN )  ->  y  =  y )
3723ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  ( Base `  ( Ws  A ) ) )  /\  n  e.  NN )  ->  ( le `  W )  =  ( le `  ( Ws  A ) ) )
38 simplll 798 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  ( Base `  ( Ws  A ) ) )  /\  n  e.  NN )  ->  A  e.  (SubMnd `  W ) )
39 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  ( Base `  ( Ws  A ) ) )  /\  n  e.  NN )  ->  n  e.  NN )
4039nnnn0d 11351 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  ( Base `  ( Ws  A ) ) )  /\  n  e.  NN )  ->  n  e.  NN0 )
41 simpllr 799 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  ( Base `  ( Ws  A ) ) )  /\  n  e.  NN )  ->  x  e.  (
Base `  ( Ws  A
) ) )
4238, 12syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  ( Base `  ( Ws  A ) ) )  /\  n  e.  NN )  ->  A  =  (
Base `  ( Ws  A
) ) )
4341, 42eleqtrrd 2704 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  ( Base `  ( Ws  A ) ) )  /\  n  e.  NN )  ->  x  e.  A
)
44 eqid 2622 . . . . . . . . . . . 12  |-  (.g `  ( Ws  A ) )  =  (.g `  ( Ws  A ) )
454, 11, 44submmulg 17586 . . . . . . . . . . 11  |-  ( ( A  e.  (SubMnd `  W )  /\  n  e.  NN0  /\  x  e.  A )  ->  (
n (.g `  W ) x )  =  ( n (.g `  ( Ws  A ) ) x ) )
4638, 40, 43, 45syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  ( Base `  ( Ws  A ) ) )  /\  n  e.  NN )  ->  ( n (.g `  W ) x )  =  ( n (.g `  ( Ws  A ) ) x ) )
4736, 37, 46breq123d 4667 . . . . . . . . 9  |-  ( ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  ( Base `  ( Ws  A ) ) )  /\  n  e.  NN )  ->  ( y ( le `  W ) ( n (.g `  W
) x )  <->  y ( le `  ( Ws  A ) ) ( n (.g `  ( Ws  A ) ) x ) ) )
4847rexbidva 3049 . . . . . . . 8  |-  ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  (
Base `  ( Ws  A
) ) )  -> 
( E. n  e.  NN  y ( le
`  W ) ( n (.g `  W ) x )  <->  E. n  e.  NN  y ( le `  ( Ws  A ) ) ( n (.g `  ( Ws  A ) ) x ) ) )
4935, 48imbi12d 334 . . . . . . 7  |-  ( ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  /\  y  e.  (
Base `  ( Ws  A
) ) )  -> 
( ( ( 0g
`  W ) ( lt `  W ) x  ->  E. n  e.  NN  y ( le
`  W ) ( n (.g `  W ) x ) )  <->  ( ( 0g `  ( Ws  A ) ) ( lt `  ( Ws  A ) ) x  ->  E. n  e.  NN  y ( le `  ( Ws  A ) ) ( n (.g `  ( Ws  A ) ) x ) ) ) )
5049ralbidva 2985 . . . . . 6  |-  ( ( A  e.  (SubMnd `  W )  /\  x  e.  ( Base `  ( Ws  A ) ) )  ->  ( A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  W
) ( lt `  W ) x  ->  E. n  e.  NN  y ( le `  W ) ( n (.g `  W ) x ) )  <->  A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  ( Ws  A ) ) ( lt `  ( Ws  A ) ) x  ->  E. n  e.  NN  y ( le `  ( Ws  A ) ) ( n (.g `  ( Ws  A ) ) x ) ) ) )
5150ralbidva 2985 . . . . 5  |-  ( A  e.  (SubMnd `  W
)  ->  ( A. x  e.  ( Base `  ( Ws  A ) ) A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  W
) ( lt `  W ) x  ->  E. n  e.  NN  y ( le `  W ) ( n (.g `  W ) x ) )  <->  A. x  e.  ( Base `  ( Ws  A ) ) A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  ( Ws  A ) ) ( lt `  ( Ws  A ) ) x  ->  E. n  e.  NN  y ( le `  ( Ws  A ) ) ( n (.g `  ( Ws  A ) ) x ) ) ) )
5251adantl 482 . . . 4  |-  ( ( ( W  e. Toset  /\  W  e. Archi )  /\  A  e.  (SubMnd `  W )
)  ->  ( A. x  e.  ( Base `  ( Ws  A ) ) A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  W
) ( lt `  W ) x  ->  E. n  e.  NN  y ( le `  W ) ( n (.g `  W ) x ) )  <->  A. x  e.  ( Base `  ( Ws  A ) ) A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  ( Ws  A ) ) ( lt `  ( Ws  A ) ) x  ->  E. n  e.  NN  y ( le `  ( Ws  A ) ) ( n (.g `  ( Ws  A ) ) x ) ) ) )
5320, 52sylibd 229 . . 3  |-  ( ( ( W  e. Toset  /\  W  e. Archi )  /\  A  e.  (SubMnd `  W )
)  ->  ( A. x  e.  ( Base `  W ) A. y  e.  ( Base `  W
) ( ( 0g
`  W ) ( lt `  W ) x  ->  E. n  e.  NN  y ( le
`  W ) ( n (.g `  W ) x ) )  ->  A. x  e.  ( Base `  ( Ws  A ) ) A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  ( Ws  A ) ) ( lt `  ( Ws  A ) ) x  ->  E. n  e.  NN  y ( le `  ( Ws  A ) ) ( n (.g `  ( Ws  A ) ) x ) ) ) )
5410, 53mpd 15 . 2  |-  ( ( ( W  e. Toset  /\  W  e. Archi )  /\  A  e.  (SubMnd `  W )
)  ->  A. x  e.  ( Base `  ( Ws  A ) ) A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  ( Ws  A ) ) ( lt `  ( Ws  A ) ) x  ->  E. n  e.  NN  y ( le `  ( Ws  A ) ) ( n (.g `  ( Ws  A ) ) x ) ) )
55 resstos 29660 . . . 4  |-  ( ( W  e. Toset  /\  A  e.  (SubMnd `  W )
)  ->  ( Ws  A
)  e. Toset )
5627adantl 482 . . . 4  |-  ( ( W  e. Toset  /\  A  e.  (SubMnd `  W )
)  ->  ( Ws  A
)  e.  Mnd )
57 eqid 2622 . . . . 5  |-  ( Base `  ( Ws  A ) )  =  ( Base `  ( Ws  A ) )
58 eqid 2622 . . . . 5  |-  ( 0g
`  ( Ws  A ) )  =  ( 0g
`  ( Ws  A ) )
5957, 58, 44, 28, 29isarchi2 29739 . . . 4  |-  ( ( ( Ws  A )  e. Toset  /\  ( Ws  A )  e.  Mnd )  ->  ( ( Ws  A )  e. Archi  <->  A. x  e.  (
Base `  ( Ws  A
) ) A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  ( Ws  A ) ) ( lt `  ( Ws  A ) ) x  ->  E. n  e.  NN  y ( le `  ( Ws  A ) ) ( n (.g `  ( Ws  A ) ) x ) ) ) )
6055, 56, 59syl2anc 693 . . 3  |-  ( ( W  e. Toset  /\  A  e.  (SubMnd `  W )
)  ->  ( ( Ws  A )  e. Archi  <->  A. x  e.  ( Base `  ( Ws  A ) ) A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  ( Ws  A ) ) ( lt `  ( Ws  A ) ) x  ->  E. n  e.  NN  y ( le `  ( Ws  A ) ) ( n (.g `  ( Ws  A ) ) x ) ) ) )
6160adantlr 751 . 2  |-  ( ( ( W  e. Toset  /\  W  e. Archi )  /\  A  e.  (SubMnd `  W )
)  ->  ( ( Ws  A )  e. Archi  <->  A. x  e.  ( Base `  ( Ws  A ) ) A. y  e.  ( Base `  ( Ws  A ) ) ( ( 0g `  ( Ws  A ) ) ( lt `  ( Ws  A ) ) x  ->  E. n  e.  NN  y ( le `  ( Ws  A ) ) ( n (.g `  ( Ws  A ) ) x ) ) ) )
6254, 61mpbird 247 1  |-  ( ( ( W  e. Toset  /\  W  e. Archi )  /\  A  e.  (SubMnd `  W )
)  ->  ( Ws  A
)  e. Archi )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    \ cdif 3571    C_ wss 3574   class class class wbr 4653    _I cid 5023   ` cfv 5888  (class class class)co 6650   NNcn 11020   NN0cn0 11292   Basecbs 15857   ↾s cress 15858   lecple 15948   0gc0g 16100   ltcplt 16941  Tosetctos 17033   Mndcmnd 17294  SubMndcsubmnd 17334  .gcmg 17540  Archicarchi 29731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-seq 12802  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-ple 15961  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-toset 17034  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-inftm 29732  df-archi 29733
This theorem is referenced by:  nn0archi  29843
  Copyright terms: Public domain W3C validator